|
|
中文域名: 古今中外.com
英文域名:www.1-123.com 丰富实用的教育教学资料 |
|
[组图]中考数学代数解答题
|
查询数中考复习的详细结果
|
中考数学代数解答题
(08北京市卷)13.(本小题满分5分)计算:
.
解:
························································································ 4分
.·········································································································· 5分
(08北京市卷)14.(本小题满分5分)
解不等式
,并把它的解集在数轴上表示出来.
14.(本小题满分5分)
解:去括号,得
.······································································ 1分
移项,得
.·············································································· 2分
合并,得
.····························································································· 3分
系数化为1,得
.····················································································· 4分
不等式的解集在数轴上表示如下:
(08北京市卷)16.(本小题满分5分)
如图,已知直线
经过点
,求此直线与
轴,
轴的交点坐标.
16.(本小题满分5分)
解:由图象可知,点
在直线
上,············································ 1分
.
解得
.······································································································ 2分
直线的解析式为
.········································································· 3分
令
,可得
.
直线与
轴的交点坐标为
.································································· 4分
令
,可得
.
直线与
轴的交点坐标为
.·································································· 5分
(08北京市卷)17.(本小题满分5分)
已知
,求
的值.
解:
······························································································· 2分
.·········································································································· 3分
当
时,
.·················································································· 4分
原式
.··················································································· 5分
“限塑令”实施前,平均一次购物使用不同数量塑料购物袋的人数统计图
|
“限塑令”实施后,使用各种
购物袋的人数分布统计图
|
(08北京市卷)20.为减少环境污染,自2008年6月1日起,全国的商品零售场所开始实行“塑料购物袋有偿使用制度”(以下简称“限塑令”).某班同学于6月上旬的一天,在某超市门口采用问卷调查的方式,随机调查了“限塑令”实施前后,顾客在该超市用购物袋的情况,以下是根据100位顾客的100份有效答卷画出的统计图表的一部分:
“限塑令”实施后,塑料购物袋使用后的处理方式统计表
处理方式 |
直接丢弃 |
直接做垃圾袋 |
再次购物使用 |
其它 |
选该项的人数占
总人数的百分比 |
5% |
35% |
49% |
11% |
请你根据以上信息解答下列问题:
(1)补全图1,“限塑令”实施前,假如天天约有2 000人次到该超市购物.根据这100位顾客平均一次购物使用塑料购物袋的平均数,估计这个超市天天需要为顾客提供多少个塑料购物袋?
(2)补全图2,并根据统计图和统计表说明,购物时怎样选用购物袋,塑料购物袋使用后怎样处理,能对环境保护带来积极的影响.
解:(1)补全图1见下图.·················································································· 1分
“限塑令”实施前,平均一次购物使用不同数量塑料购物袋的人数统计图
|
(个).
这100位顾客平均一次购物使用塑料购物袋的平均数为3个.······························ 3分
.
估计这个超市天天需要为顾客提供6000个塑料购物袋.······································· 4分
(2)图2中,使用收费塑料购物袋的人数所占百分比为
.···························· 5分
根据图表回答正确给1分,例如:由图2和统计表可知,购物时应尽量使用自备袋和押金式环保袋,少用塑料购物袋;塑料购物袋应尽量循环使用,以便减少塑料购物袋的使用量,为环保做贡献.····· 6分
(08北京市卷)21.(本小题满分5分)列方程或方程组解应用题:
京津城际铁路将于2008年8月1日开通运营,预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间相同.假如这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米?
21.解:设这次试车时,由北京到天津的平均速度是每小时
千米,则由天津返回北京的平均速度是每小时
千米.····················································································································· 1分
依题意,得
.······································································ 3分
解得
.···································································································· 4分
答:这次试车时,由北京到天津的平均速度是每小时200千米.·························· 5分
(08北京市卷)23.已知:关于
的一元二次方程
.
(1)求证:方程有两个不相等的实数根;
(2)设方程的两个实数根分别为
,
(其中
).若
是关于
的函数,且
,求这个函数的解析式;
(3)在(2)的条件下,结合函数的图象回答:当自变量
的取值范围满足什么条件时,
.
23.(1)证实:
是关于
的一元二次方程,
.
当
时,
,即
.
方程有两个不相等的实数根.……2分
(2)解:由求根公式,得
.
或
.······················································································· 3分
,
.
,
,
.···················································································· 4分
.
即
为所求.··················· 5分
(3)解:在同一平面直角坐标系中分别画出
与
的图象.
······························································ 6分
由图象可得,当
时,
.···· 7分
(08北京市卷)24.在平面直角坐标系
中,抛物线
与
轴交于
两点(点
在点
的左侧),与
轴交于点
,点
的坐标为
,将直线
沿
轴向上平移3个单位长度后恰好经过
两点.
(1)求直线
及抛物线的解析式;
(2)设抛物线的顶点为
,点
在抛物线的对称轴上,且
,求点
的坐标;
(3)连结
,求
与
两角和的度数.
24.解:(1)
沿
轴向上平移3个单位长度后经过
轴上的点
,
.
设直线
的解析式为
.
在直线
上,
.
解得
.
直线
的解析式为
.……1分
抛物线
过点
,
解得
抛物线的解析式为
.································································· 2分
(2)由
.
可得
.
,
,
,
.
可得
是等腰直角三角形.
,
.
如图1,设抛物线对称轴与
轴交于点
,
.
过点
作
于点
.
.
可得
,
.
在
与
中,
,
,
.
,
.
解得
.
点
在抛物线的对称轴上,
点
的坐标为
或
.······································································· 5分
(3)解法一:如图2,作点
关于
轴的对称点
,则
.
连结
,
可得
,
.
由勾股定理可得
,
.
又
,
.
是等腰直角三角形,
,
.
.
.
即
与
两角和的度数为
.·························································· 7分
解法二:如图3,连结
.
同解法一可得
,
.
在
中,
,
,
.
在
和
中,
,
,
.
.
.
.
,
.
即
与
两角和的度数为
.·························································· 7分
(08天津市卷)19.(本小题6分)
解二元一次方程组
19.本小题满分6分.
解 ∵
由②得 ,③ ······················································································ 2分
将③代入①,得 .解得 .代入③,得 .
∴原方程组的解为 ·················································································· 6分
(08天津市卷)20.(本小题8分)
已知点P(2,2)在反比例函数 ( )的图象上,
(Ⅰ)当 时,求 的值;
(Ⅱ)当 时,求 的取值范围.
20.本小题满分8分.
解 (Ⅰ)∵点P(2,2)在反比例函数 的图象上,
∴ .即 . ··························································································· 2分
∴反比例函数的解析式为 .
∴当 时, . ··················································································· 4分
(Ⅱ)∵当 时, ;当 时, , ············································ 6分
又反比例函数 在 时 值随 值的增大而减小, ···································· 7分
∴当 时, 的取值范围为 .······················································· 8分
(08天津市卷)22.(本小题8分)
下图是交警在一个路口统计的某个时段来往车辆的车速情况(单位:千米/时).
请分别计算这些车辆行驶速度的平均数、中位数和众数(结果精确到0.1).
22.本小题满分8分.
解 观察直方图,可得
车速为50千米/时的有2辆,车速为51千米/时的有5辆,
车速为52千米/时的有8辆,车速为53千米/时的有6辆,
车速为54千米/时的有4辆,车速为55千米/时的有2辆,
车辆总数为27, ······························································································· 2分
∴这些车辆行驶速度的平均数为
.····································· 4分
∵将这27个数据按从小到大的顺序排列,其中第14个数是52,
∴这些车辆行驶速度的中位数是52. ······························································ 6分
∵在这27个数据中,52出现了8次,出现的次数最多,
∴这些车辆行驶速度的众数是52.······································································· 8分
(08天津市卷)24.(本小题8分)注重:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路,填写表格,并完成本题解答的全过程.假如你选用其他的解题方案,此时,不必填写表格,只需按照解答题的一般要求,进行解答即可.
天津市奥林匹克中心体育场——“水滴”位于天津市西南部的奥林匹克中心内,某校九年级学生由距“水滴”10千米的学校出发前往参观,一部分同学骑自行车先走,过了20分钟后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是骑车同学速度的2倍,求骑车同学的速度.
(Ⅰ)设骑车同学的速度为x千米/时,利用速度、时间、路程之间的关系填写下表.
(要求:填上适当的代数式,完成表格)
|
速度(千米/时) |
所用时间(时) |
所走的路程(千米) |
骑自行车 |
|
|
10 |
乘汽车 |
|
|
10 | |
(Ⅱ)列出方程(组),并求出问题的解.
24.本小题满分8分.
解 (Ⅰ)
|
速度(千米/时) |
所用时间(时) |
所走的路程(千米) |
骑自行车 |
|
|
10 |
乘汽车 |
|
|
10 | |
·························································· 3分
(Ⅱ)根据题意,列方程得 . ························································ 5分
解这个方程,得 . ·············································································· 7分
经检验, 是原方程的根.
所以, .
答:骑车同学的速度为每小时15千米. ····························································· 8分
(08天津市卷)26.(本小题10分)
已知抛物线 ,
(Ⅰ)若 , ,求该抛物线与 轴公共点的坐标;
(Ⅱ)若 ,且当 时,抛物线与 轴有且只有一个公共点,求 的取值范围;
(Ⅲ)若 ,且 时,对应的 ; 时,对应的 ,试判定当 时,抛物线与 轴是否有公共点?若有,请证实你的结论;若没有,阐述理由.
26.本小题满分10分.
解(Ⅰ)当 , 时,抛物线为 ,
方程 的两个根为 , .
∴该抛物线与 轴公共点的坐标是 和 . ······································· 2分
(Ⅱ)当 时,抛物线为 ,且与 轴有公共点.
对于方程 ,判别式 ≥0,有 ≤ . ······························· 3分
①当 时,由方程 ,解得 .
此时抛物线为 与 轴只有一个公共点 .························ 4分
②当 时,
时, ,
时, .
由已知 时,该抛物线与 轴有且只有一个公共点,考虑其对称轴为 ,
应有 即
解得 .
综上, 或 . ······································································· 6分
(Ⅲ)对于二次函数 ,
由已知 时, ; 时, ,
又 ,∴ .
于是 .而 ,∴ ,即 .
∴ . ··································································································· 7分
∵关于 的一元二次方程 的判别式
,
∴抛物线 与 轴有两个公共点,顶点在 轴下方.···················· 8分
又该抛物线的对称轴 ,
由 , , ,
得 ,
∴ .
又由已知 时, ; 时, ,观察图象,
可知在 范围内,该抛物线与 轴有两个公共点. ··································· 10分
(08河北省卷)19.(本小题满分7分)
已知 ,求 的值.
19.解:原式
.
当 时,原式 .
(08河北省卷)20.(本小题满分8分)
某种子培育基地用A,B,C,D四种型号的小麦种子共2 000粒进行发芽实验,从中选出发芽率高的种子进行推广.通过实验得知,C型号种子的发芽率为 ,根据实验数据绘制了图10-1和图10-2两幅尚不完整的统计图.
(1)D型号种子的粒数是 ;
(2)请你将图10-2的统计图补充完整;
(3)通过计算说明,应选哪一个型号的种子进行推广;
(4)若将所有已发芽的种子放到一起,从中随机取出一粒,求取到B型号发芽种子的概率.
20.解:(1)500;
(2)如图1;
(3) 型号发芽率为 ,B型号发芽率为 ,
D型号发芽率为 ,C型号发芽率为 .
应选C型号的种子进行推广.
(4) .
(08河北省卷)21.(本小题满分8分)
如图11,直线 的解析表达式为 ,且 与 轴交于点 ,直线 经过点 ,直线 , 交于点 .
(1)求点 的坐标;
(2)求直线 的解析表达式;
(3)求 的面积;
(4)在直线 上存在异于点 的另一点 ,使得
与 的面积相等,请直接写出点 的坐标.
21.解:(1)由 ,令 ,得 . . .
(2)设直线 的解析表达式为 ,由图象知: , ; , .
直线 的解析表达式为 .
(3)由 解得 .
, .
(4) .
(08河北省卷)25.(本小题满分12分)
研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为 (吨)时,所需的全部费用 (万元)与 满足关系式 ,投入市场后当年能全部售出,且在甲、乙两地每吨的售价 , (万元)均与 满足一次函数关系.(注:年利润=年销售额-全部费用)
(1)成果表明,在甲地生产并销售 吨时, ,请你用含 的代数式表示甲地当年的年销售额,并求年利润 (万元)与 之间的函数关系式;
(2)成果表明,在乙地生产并销售 吨时, ( 为常数),且在乙地当年的最大年利润为35万元.试确定 的值;
(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?
参考公式:抛物线 的顶点坐标是 .
25.解:(1)甲地当年的年销售额为 万元;
.
(2)在乙地区生产并销售时,
年利润 .
由 ,解得 或 .
经检验, 不合题意,舍去, .
(3)在乙地区生产并销售时,年利润 ,
将 代入上式,得 (万元);将 代入 ,
得 (万元). , 应选乙地.
(08内蒙古赤峰)19.(本题满分16分)
(1)解分式方程:
19.(1)解:方程两边同乘 ,得
······················································· (2分)
化简,得 ······················································································· (5分)
解得 ··································································································· (7分)
检验: 时 , 是原分式方程的解.···················· (8分)
(2)假如 是一元二次方程 的一个根,求它的另一根.
(2)解: 是 的一个根,
.
解方程得 .························································································ (3分)
原方程为
分解因式,得
, ························································································ (7分)
它的另一根是3.······················································································ (8分)
(08内蒙古赤峰)25.(本题满分14分)
在平面直角坐标系中给定以下五个点 .
(1)请从五点中任选三点,求一条以平行于 轴的直线为对称轴的抛物线的解析式;
(2)求该抛物线的顶点坐标和对称轴,并画出草图;
(3)已知点 在抛物线的对称轴上,直线 过点 且垂直于对称轴.验证:以 为圆心, 为半径的圆与直线 相切.请你进一步验证,以抛物线上的点 为圆心 为半径的圆也与直线 相切.由此你能猜想到怎样的结论.
25.解:(1)设抛物线的解析式为 ,
且过点 ,
由 在 H .
则 .……(2分)
得方程组 ,
解得 .
抛物线的解析式为 ············· (4分)
(2)由 ·········· (6分)
得顶点坐标为 ,对称轴为 .······· (8分)
(3)①连结 ,过点 作直线 的垂线,垂足为 ,
则 .
在 中, , ,
,
,
以 点为圆心, 为半径的 与直线 相切.·························· (10分)
②连结 过点 作直线 的垂线,垂足为 .过点 作 垂足为 ,
则 .
在 中, , .
.
以 点为圆心 为半径的 与直线 相切.····························· (12分)
③以抛物线上任意一点 为圆心,以 为半径的圆与直线 相切.·· (14分)
(08年内蒙古乌兰察布)19.(本小题8分)
先化简,再求值 ,其中 .
19.
.
当 时,
.
(08年内蒙古乌兰察布)20.(本小题6分)
在“不闯红灯,珍爱生命”活动中,文明中学的关欣和李好两位同学某天来到城区中心的十字路口,观察,统计上午7:00—12:00中闯红灯的人次,制作了如下的两个数据统计图.
(1)通过计算,估计一个月(30天)上午7:00—12:00在该十字路口闯红灯的老年人约有多少次;
(2)请你根据统计图提供的信息向交通治理部门提出一条合理化建议.
20.(1) (人).
(2)加强对11:00—12:00这一时段的交通治理,或加强对中青年人(或未成年人)交通安全教育.
注:建议要合理,思想要积极向上.
(08年内蒙古乌兰察布)22.(本小题10分)
在一次春游中,小明、小亮等同学随家人一同到江郎山旅游,下面是购买门票时,小明与他爸爸的对话(如图所示).
(1)小明他们一共去了几个成人?几个学生?
(2)请你帮助小明算一算,用哪种方式买票更省钱?并说明理由.
22.解:(1)设小明他们一共了 个成人, 个学生,
答:小明他们一共去了7个成人,4个学生.
(2)若按14人购买团体票,则共需 (元)
(元).
购买团体票可省24元.
(08年内蒙古乌兰察布)23.(本小题11分)
声音在空气中传播的速度 (m/s)是气温 (℃)的一次函数,下表列出了一组不同气温的音速:
气温 (℃) |
0 |
5 |
10 |
15 |
20 |
音速 (m/s) |
331 |
334 |
337 |
340 |
343 |
(1)求 与 之间的函数关系式;
(2)气温 ℃时,某人看到烟花燃放5s后才听到声响,那么此人与烟花燃放地约相距多远?
23.解:(1)设 ,
,
(2)当 时, .
.
此人与烟花燃放地相距约1724m.
(08年内蒙古乌兰察布)24.(本小题14分)
两个直角边为6的全等的等腰直角三角形 和 ,按如图一所示的位置放置,点 与 重合.
(1) 固定不动, 沿 轴以每秒2个单位长度的速度向右运动,当点 运动到与点 重合时停止,设运动 秒后, 和 的重叠部分面积为 ,求 与 之间的函数关系式;
(2)当 以(1)中的速度和方向运动,运动时间 秒时, 运动到如图二所示的位置,若抛物线 过点 ,求抛物线的解析式;
(3)现有一动点 在(2)中的抛物线上运动,试问点 在运动过程中是否存在点 到 轴或 轴的距离为2的情况,若存在,请求出点 的坐标;若不存在,请说明理由.
24.解:(1)由题意知重叠部分是等腰直角三角形,作 .
, ,
( )
(2) )
当 时, .
, .
.
(3)设 .
当点 到 轴的距离为 时,有 , .
当 时,得 ,
当 时,得 .
当点 到 轴的距离为2时,有 .
.
当 时,得 .
综上所述,符合条件的点 有两个,分别是 .
(08山西省卷)19.(本题8分)求代数式的值:
,其中
。
(08山西省卷)21.(本题10分)“安全教育,警钟长鸣”,为此某校从14000名学生中随机抽取了200名学生就安全知识的了解情况进行问卷调查,然后按“很好”、“较好”、“一般”、“较差”四类汇总分析,并绘制了扇形统计图(如图)。
(1)补全扇形统计图,并计算这200名学生中对安全知识了解“较好”、“很好”的总人数。(2)在图(2)中,绘制样本频数的条形统计图。
(3)根据以上信息,请提出一条合理化建议。
(08山西省卷)22.(本题10分)甲、乙两人在玩转盘游戏时,把转盘A、B分成3等份、4等份,并在每一份内标有数字(如图)。
游戏规则:同时转动两个转盘,当转盘停止后,指针所在区域的数字之积为奇数时,甲胜;指针所在区域的数字之积为偶数时,乙胜。假如指针恰好在分割线上,则需重新转动转盘。
(1)用树状图或列表的方法,求甲获胜的概率。
(2)这个游戏规则对甲、乙双方公平吗?请判定并说明理由。
(08山西省卷)24.(本题8分)某文化用品商店用200元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元。
(1)求第一批购进书包的单价是多少元?
(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?
(08山西省卷)26.(本题14分)如图,已知直线
的解析式为
,直线
与x轴、y轴分别相交于A、B两点,直线
经过B、C两点,点C的坐标为(8,0),又已知点P在x轴上从点A向点C移动,点Q在直线
从点C向点B移动。点P、Q同时出发,且移动的速度都为每秒1个单位长度,设移动时间为t秒(
)。
(1)求直线
的解析式。
(2)设△PCQ的面积为S,请求出S关于t的函数关系式。
(3)试探究:当t为何值时,△PCQ为等腰三角形?
(08山西太原)21.(本小题满分5分)
解不等式组:
21.解:解不等式
,得
.············································· 2分
解不等式
,得
.········································································· 4分
所以,原不等式组的解集是
.····························································· 5分
(08山西太原)22.(本小题满分5分)
解方程:
.
22.解法一:这里
.························································ 1分
,························································· 2分
.································································································· 3分
即
.·································································································· 4分
所以,方程的解为
.··················································· 5分
解法二:配方,得
.········································································ 3分
即
或
.·········································································· 4分
所以,方程的解为
.··················································· 5分
(08山西太原)23.(本小题满分6分)
为帮助灾区人民重建家园,某校学生积极捐款.已知第一次捐款总额为9000元,第二次捐款总额为12000元,两次人均捐款额相等,但第二次捐款人数比第一次多50人.求该校第二次捐款的人数.
23.解法一:设第二次捐款人数为
人,则第一次捐款人数为
人.·········· 1分
根据题意,得
.·········································································· 3分
解这个方程,得
.··················································································· 4分
经检验,
是所列方程的根.····································································· 5分
答:该校第二次捐款人数为200人.···································································· 6分
解法二:人均捐款额为
(元).····································· 3分
第二次捐款人数为
(人).························································ 5分
答:该校第二次捐款人数为200人.···································································· 6分
(08山西太原)25.(本小题满分10分)
甲乙两名同学做摸牌游戏.他们在桌上放了一副扑克牌中的4张牌,牌面分别是J,Q,K,K.游戏规则是:将牌面全部朝下,从这4张牌中随机取1张牌记下结果放回,洗匀后再随机取1张牌,若两次取出的牌中都没有K,则甲获胜,否则乙获胜.你认为甲乙两人谁获胜的可能性大?用列表或画树状图的方法说明理由.
25.解:乙获胜的可能性大.·············································································· 2分
进行一次游戏所有可能出现的结果如下表:·························································· 6分
第二次
第一次 |
J |
Q |
K1 |
K2 |
J |
(J,J) |
(J,Q) |
(J,K1) |
(J,K2) |
Q |
(Q,J) |
(Q,Q) |
(Q,K1) |
(Q,K2) |
K1 |
(K1,J) |
(K1,Q) |
(K1,K1) |
(K1,K2) |
K2 |
(K2,J) |
(K2,Q) |
(K2,K1) |
(K2,K2) |
从上表可以看出,一次游戏可能出现的结果共有16种,而且每种结果出现的可能性相等,其中两次取出的牌中都没有K的有(J,J),(J,Q),(Q,J),(Q,Q)等4种结果.
(两次取出的牌中都没有K)
.
(甲获胜)
,
(乙获胜)
.························································· 9分
,
乙获胜的可能性大.······································································ 10分
(08山西太原)26.(本小题满分6分)
人的视觉机能受运动速度的影响很大,行驶中司机在驾驶室内观察前方物体时是动态的,车速增加,视野变窄.当车速为50km/h时,视野为80度.假如视野
(度)是车速
(km/h)的反比例函数,求
之间的关系式,并计算当车速为100km/h时视野的度数.
26.解:设
之间的关系式为
.··············································· 1分
时,
.······································································ 2分
解,得
.······························································································· 3分
所以,
.····························································································· 4分
当
时,
(度).································································ 5分
答:当车速为100km/h时视野为40度.······························································· 6分
(08山西太原)27.(本小题满分10分)
用商家免费提供的塑料袋购物,我们享受着方便和快捷,但同时要关注它对环境的潜在危害.为了解太原市所有家庭每年丢弃塑料袋个数的情况,统计人员采用了科学的方法,随机抽取了200户,对他们某日丢弃塑料袋的个数进行了统计,结果如下表:
每户丢弃塑料袋数(单位:个) |
1 |
2 |
3 |
4 |
5 |
6 |
家庭数(单位:户) |
15 |
60 |
65 |
35 |
20 |
5 |
(1)求这天这200户家庭平均每户丢弃塑料袋的个数.
(2)假设我市现有家庭100万户,据此估计全市所有家庭每年(以365天计算)丢弃塑料袋的总数.
(3)下图是我市行政区划图,它的面积相当于图中
的面积.已知
间的实际距离为150km,
间的实际距离为110km,
.根据(2)中的估算结果,求我市每年每平方公里的土地上会增加多少个塑料袋?(取
,
的面积和最后计算结果都精确到千位)
27.解:(1)
(个/户).··························································· 2分
所以,这天这200户家庭平均每户丢弃3个塑料袋.············································ 3分
(2)
(万个).······························································· 5分
所以,我市所有家庭每年丢弃109500万个塑料袋.·············································· 6分
(3)如图,过点
作
,垂足为点
.················································ 7分
在
中,
,
由
,得
.················································ 8分
,
.····································· 9分
(个/km2).
答:我市每年平均每平方公里的土地上会增加156000个塑料袋.······················· 10分
(08山西太原)29.(本小题满分12分)
如图,在平面直角坐标系
中,直线
与
交于点
,分别交
轴于点
和点
,点
是直线
上的一个动点.
(1)求点
的坐标.
(2)当
为等腰三角形时,求点
的坐标.
(3)在直线
上是否存在点
,使得以点
为顶点的四边形是平行四边形?假如存在,直线写出
的值;假如不存在,请说明理由.
29.解:(1)在
中,当
时,
,
,点
的坐标为
.······································································· 1分
在
中,当
时,
,点
的坐标为(4,0). 2分
由题意,得
解得
点
的坐标为
.·················································································· 3分
(2)当
为等腰三角形时,有以下三种情况,如图(1).设动点
的坐标为
.
由(1),得
,
.
①当
时,过点
作
轴,垂足为点
,则
.
.
,点
的坐标为
.·············································· 4分
②当
时,过点
作
轴,垂足为点
,则
.
,
,
.
解,得
(舍去).此时,
.
点
的坐标为
.··········································································· 6分
③当
,或
时,同理可得
.·················· 9分
由此可得点
的坐标分别为
.
评分说明:符合条件的点有4个,正确求出1个点的坐标得1分,2个点的坐标得3分,3个点的坐标得5分,4个点的坐标得满分;与所求点的顺序无关.
(3)存在.以点
为顶点的四边形是平行四边形有以下三种情形,如图(2).
①当四边形
为平行四边形时,
.········································ 10分
②当四边形
为平行四边形时,
.········································· 11分
③当四边形
为平行四边形时,
.····································· 12分
评分说明:1.如你的正确解法与上述提供的参考答案不同时,可参照评分说明进行估分.
2.如解答题由多个问题组成,前一问解答有误或未答,对后面问题的解答没有影响.可依据参考答案及评分说明进行估分.
来源:中国哲士网
教师学生家长 数中考复习资料 备课考试教学
教育资料 [组图]中考数学代数解答题 文章
|
上一篇文章: 与圆有关的基本概念 |
下一篇文章: 中考数学代数选择题 |
|
|