1、某航运公司年初用120万元购进一艘运输船,在投入运输后,每一年的总收入为72万元,需要支出的各种费用为40万元。 (1)问:该船运输几年后开始盈利(盈利即指总收入减去购船费及所有支出费用之差为正值)? (2)若该船运输满15年要报废,报废时旧船卖出可收回20万元,求这15年的年平均盈利额(精确到0.1万元)。 2、为加强防汛工作,市工程队准备对苏州河一段长为2240米的河堤进行加固.由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20米,因而完成此段加固工程所需天数将比原计划缩短2天.为进一步缩短该段加固工程的时间,如果要求每天加固224米,那么在现在计划的基础上,每天加固的长度还要再增加多少米? 3、小明家、王老师家、学校在同一条路上,小明家到王老师家的路程为3千米,王老师家到学校的路程为0.5千米,由于小明的父母战斗在抗“非典”第一线,为了使他能按时到校,王老师每天骑自行车接小明上学。已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20分钟,问王老师的步行速度及骑自行车速度各是多少千米/时? 4、红安卷烟厂生产的“龙乡”牌香烟盒里,装满大小均匀的20支香烟,打开烟盒的顶盖后,二十支香烟排列成三行,经 量,一支香烟的直径约为0.75㎝,长约为8.4㎝. (1)试计算烟盒顶盖ABCD的面积(本小题计算结果不取近似值). A B C D 图5 (2)制作这样一个烟盒至少需要多少面积的纸张(不计重叠粘合的部
分,计算结果精确到0.1㎝, 取1.73). 解: 5、2003年2月27日《广州日报》报道:2003年底广州市自然保护区覆盖率(即自然保护区面积占全市面积的百分比)为4.65%,尚未达到国家A级标准.因此,市政府决定加快绿化建设,力争到2004年底自然保护区覆盖率达到8%以上.若要达到最低目标8%,则广州市自然保护区面积的年平均增长率应是多少?(结果保留三位有效数字) 6、某公司需在一个月(31天)内完成新建办公楼的装修工程.如果由甲、乙两个工程队合做,12天可完成;如果由甲、乙两队单独做,甲队比乙队少用10天完成. (1)求甲、乙两工程队单独完成此项工程所需的天数. (2)如果请甲工程队施工,公司每日需付费用2000元;如果请乙队施工,公司每日需付费用1400元.在规定时间内:A.请甲队单独完成此项工程出.B请乙队单独完成此项工程;C.请甲、乙两队合作完成此项工程.以上三种方案哪一种花钱最少? 7、王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元。其中种茄子每亩用了1700元,获纯利2400元;种西红柿每亩用了1800元,获纯利2600元。问王大伯一共获纯利多少元? 8、为了营造人与自然和谐共处的生态环境,某市近年加快实施城乡绿化一体化工程,创建国家城市绿化一体化城市.某校甲、乙两班师生前往郊区参加植树活动.已知甲班每天比乙班少种10棵树,甲班种150棵树所用的天数比乙班种120棵树所用的天数多2天.求甲、乙两班每天各植树多少棵? 28.(13分)周末某班组织登山活动,同学们分甲、乙两组从山脚下沿着一条道路同时向山顶进发。设甲、乙两组行进同一段所用的时间之比为2∶3 。 (1) 直接写出甲、乙两组行进速度之比; (2) 当甲组到达山顶时,乙组行进到山腰A处,且A处离山顶的路程尚有1.2千米。试问山脚离山顶的路程有多远? (3) 在题(2)所述内容(除最后的问句外)的基础上,设乙组从A处继续登山,甲组到达山顶后休息片刻,再从原路下山,并且在山腰B处与乙组相遇。请你先根据以上情景提出一个相应的问题,再给予解答(要求:1问题的提出不得再增添其他条件;2问题的解决必须利用上述情景提供的所有已知条件) 9、一自行车队进行训练,训练的路程是55千米,出发后所有队员都保持相同的速度前进,行进一段路程后,1号队员将速度提高10千米超出队伍,当其余队员又前进20千米后,2号队员的速度也提高了10千米,结果2号队员比1号队员晚 小时到达终点,问车队从出发至最后的队员到达终点所花的时间是多少? 10、某租凭公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出。当每辆车的月租金每增加50元时,未租出的车将回增加1辆。租出的车每月需维护费150元,未租出的车每月需维护费50元。 (1)当每辆车的月租金定为3600元时,能租出 辆车(直接填写答案); (2)设每辆车的月租金为x(x≥3000)元,用含x的代数式填空: 未租出的车辆数 租出的车辆数 所有未租出的车每月的维护费 租出的车每辆的月收益
(1) 每辆车的月租金定为多少元时,租凭公司的月收益最大?最大月收益是多少元? 11、甲、乙两人分别从相距27千米的A、B两地同时出发相向而行,3小时后相遇,相遇后两人按原来的速度继续前进,甲到达B地比乙到达A地早1小时21分,求两人的速度。 (1)设甲的速度是x千米/小时,乙的速度是y千米/小时,根据题意,利用速度、时间、路程之间的关系填写下表(要求适当的代数式,完成表格): (2) 列出方程(组),并求出问题的解。
12、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同。安全检查中,对4道门进行了测试:当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生;当同时开启一道正门和一道侧门时,4分钟内可以通过800名学生。 (1)求平均每分钟一道正门和一道侧门各可以通过多少名学生? (2)检查中发现,紧急情况时因学生拥挤,出门的效率将降低20%。安全检查规定:在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离。假设这栋教学大楼每间教室最多有45名学生,问:建造的这4道门是否符合安全规定?请说明理由。 13、某班班委主动为班上一位生病住院的同学筹集部分医药费,计划筹集450元,由全体班委同学分担,有5名同学闻迅后也自原参加捐助,和班委同学一起平均分担,因此每个班委同学比原先少分担45元。问:该班班委有几人? 14、甲、乙两班学生到集市上购买苹果,,苹果的价格如下 购苹果数 不超过30千克 30千克以上但不超过50千克 50千克以上 每千克价格 3元 2.5元 2元 甲班分两次共购买苹果70千克(第二次多于第一次),共付出189元,而乙班则一次购买苹果70千克。 (1)乙班比甲班少付多少元? (2)甲班第一次、第二次分别购买苹果多少千克? 15、甲乙二人做某种机器零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等,求甲、乙二人每小时各做多少个零件。 16.学校存煤50吨,由于改进炉灶结构和烧煤技术后,每天能节约煤100千克,已知所存的煤比原计划多烧25天,问原计划每天烧煤多少千克? 17.列方程或方程组解应用题: 在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下: 甲同学说:“二环路车流量为每小时10000辆”; 乙同学说:“四环路比三环路车流量每小时多2000辆”; 丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍” . 请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少. 18、 某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元。 (1)求该同学看中的随身听和书包单价各是多少元? (2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱? 19、据有关部门统计:20世纪初全世界共有哺乳类和鸟类动物约13000种,由于环境等到因素的影响,到20世纪末这两类动物种数共灭绝约1.9%,其中哺乳类动物灭绝约3.0%,鸟类动物灭绝约1.5%. (1)问20世纪初哺乳类动物和鸟类动物各有多少种? (2)现在人们越来越意识到保护动物就是保护人类自己,到本世纪末,如果要把哺乳类动物的灭绝种数控制在0.9%以内,其中哺乳类动物灭绝的咱数与鸟类动物灭绝的种数之比约为6:7.为实现这个目标,鸟类灭绝不能超过多少种?(本题所求结果均精确到十位)
|