设本页为首页                              加入收藏
中文域名: 古今中外.com       英文域名:www.1-123.com     丰富实用的教育教学资料
您现在的位置: 中国哲士网 >> 教育教学 >> 中小学数学 >> 九年级上学期 >> 数学九年级上学期复习 >> 正文

 

[组图]二次函数的期末综合

查询数九年上复习的详细结果
复习要求:
  ①通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义;
  ②会用描点法出二次函数的图象,能从图象上认识二次函数的性质;
  ③会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题;
  ④会利用二次函数的图象求一元二次方程的近似解.

例题分析:
  中考题中,选填题的较难题、解答题中的综合题也有不少以二次函数有关的知识为考查点,在北京这两年的课标卷中,也都出现了以二次函数为背景、结合其他知识的综合题,以考查学生的综合能力.
  可以看看07、08两年北京中考题中涉及二次函数的问题,07年第24题和08年第24题.这两个题都考查了待定系数法求一次函数和二次函数解析式、二次函数的性质(与y轴交点纵坐标与“c”的关系、抛物线顶点坐标、对称轴等)、直线的平移等知识,07年的题还涉及三角形内角平分线及内角平分线交点坐标的确定等知识,08年涉及相似三角形、锐角三角函数等知识,同时考查学生对图形的直观感知和综合运用数学知识分析、解决问题的能力.
  不过可以看出,即便是代数几何综合题,也是从考查二次函数基本性质入手的,涉及的几何知识也是相对比较基础的,关键考查学生将复杂问题分解为简单(或者说基本)问题的能力,综合运用数学知识分析解决问题的能力,以及对图形的认识和整体感知的能力.

  1.已知二次函数的图象如图所示,有下列5个结论:
  ① ; ② ; ③ ; ④
  ⑤ ,(的实数)其中正确的结论有(  )
  A. 2个   B. 3个   C. 4个   D. 5个

  解:选B,③④⑤正确.

  2.方程的实数根的个数是_____.
  A.1   B.2    C.3    D.4

  解:C,利用图象法,分别出两侧二次函数和反比例函数图象,看交点个数.

  3.二次函数的图象如图所示,根据图象解答下列问题:
  (1)写出方程的两个根.
  (2)写出不等式的解集.
  (3)写出的增大而减小的自变量的取值范围.
  (4)若方程有两个不相等的实数根,求的取值范围.

  解:(1);(2);(3);(4)
  本题主要考查二次函数与一元二次方程,一元二次不等式之间的关系,利用数形结合思想.

  4.如图,抛物线与x轴交A、B两点(A点在B点左侧),直线与抛物线交于A、C两点,其中C点的横坐标为2.
  (1)求A、B 两点的坐标及直线AC的函数表达式;
  (2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;
  (3)点G是抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.

  解:
  (1)令y=0,解得
    ∴A(-1,0),B(3,0)
    将C点的横坐标x=2代入得y=-3,∴C(2,-3)
    ∴直线AC的函数解析式是y=-x-1;
  (2)设P点的横坐标为x(-1≤x≤2)
    则P,E的坐标分别为:P(x,-x-1),E
    ∵P点在E点的上方,PE=
    ∴当时,PE的最大值=
  (3)存在4个这样的点F,分别是.

  5.如图,已知二次函数的图象过x轴上点A(,0)和点B,且与y轴交于点C.
  (1)求此二次函数的解析式;
  (2)若点P是直线AC上一动点,当∠OPB=90°时,求点P坐标.
  (3)若点P在过点C的直线上移动,只存在一个点P使∠OPB=90°,求此时这条过点C的直线的解析式.

  解:
  (1)将A(,0)代入
    即 , 得:.
    ∴二次函数的解析式为.
  (2) 已知抛物线解析式为
    令y=0,解得x1=,x2=4.令x=0,解得y=1.
    ∴A、B、C三点坐标为A(,0)、B(4,0)、C(0,1).
    设直线AC的解析式为y=kx+b,把C点、A点坐标代入,
    求出直线AC解析式为:
    设P(x,-2x+1),       
    联结OP、PB,过P点作PF⊥OA于F,
    ∵∠OPB=90°,
    ∴△OPF∽△PBF.
    ∴
    即  PF2=OF·FB.
    ∴.
    解得:,∴=.
    ∴P点坐标()或();

  (3)以OB为直径作⊙G,当过C点的直线切圆G于点P时,
    直线与x轴交于点H,只存在一个点P使∠OPB=90°.
    把C点坐标代入直线得,b=1,
    ∵HP是圆O切线,∠COH=∠HPG=90°,又∵∠OHC=∠PHG
    ∴△HOC∽△HPG.
    由HO∶HP=OC∶PG,设HO=a,由PG=2,OC=1,
    得.
    在Rt△HPG中,由.
    解得(不合题意,舍去),.
    ∵与x轴交点的横坐标为
    ∴  得.    ∴所求直线的解析式为:.

  6.在平面直角坐标系中,抛物线经过两点.
  (1)求此抛物线的解析式;
  (2)设抛物线的顶点为,将直线沿轴向下平移两个单位得到直线,直线与抛物线的对称轴交于点,求直线的解析式;
  (3)在(2)的条件下,求到直线距离相等的点的坐标.
  解:
  (1)根据题意得解得
    所以抛物线的解析式为
  (2)由得抛物线的顶点坐标为
    依题意,可得,且直线过原点.
    设直线的解析式为
    则,解得.   所以直线的解析式为
  (3)到直线距离相等的点有四个.
    如图,由勾股定理得
    所以为等边三角形.
    易证轴所在直线平分
    轴是的一个外角的平分线.
    作的平分线,交轴于点,交轴于点,
    作相邻外角的平分线,
    交轴于点,反向延长交轴于点.
    可得点就是到直线
    距离相等的点.
    可证均为等边三角形.
    可求得:
    ①,所以点的坐标为
    ②点与点重合,所以点的坐标为
    ③点与点关于轴对称,所以点的坐标为
    ④设抛物线的对称轴与轴的交点为
    ,且,所以点的坐标为
    综上所述,到直线距离相等的点的坐标分别为
    

  7.在平面直角坐标系中,已知二次函数的图象与轴交于两点(点在点的左边),与轴交于点,其顶点的横坐标为1,且过点
  (1)求此二次函数的表达式;
  (2)若直线与线段交于点(不与点重合),则是否存在这样的直线,使得以为顶点的三角形与相似?若存在,求出该直线的函数表达式及点的坐标;若不存在,请说明理由;
  (3)若点是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角的大小(不必证明),并写出此时点的横坐标的取值范围.

  解:
  (1)二次函数图象顶点的横坐标为1,且过点
      解得
    此二次函数的表达式为 
  (2)假设存在直线与线段交于点(不与点重合),使得以为顶点的三角形与相似.
    在中,令,则由,解得
    
    令,得
    设过点的直线于点,过点轴于点
    的坐标为,点的坐标为
     点的坐标为
    
    
    要使
    已有,则只需,   ①
    或             ②
    成立.
    若是①,则有
    而
    中,由勾股定理,得
    解得  (负值舍去).
       .  的坐标为
    将点的坐标代入中,求得. 
    满足条件的直线的函数表达式为
   [或求出直线的函数表达式为,则与直线平行的直线的函数表达式为
    此时易知,再求出直线的函数表达式为
    联立求得点的坐标为.]
    若是②,则有.而
    中,由勾股定理,得
    解得  (负值舍去).
        .  的坐标为
    将点的坐标代入中,求得
    满足条件的直线的函数表达式为
    存在直线与线段交于点(不与点重合),
    使得以为顶点的三角形与相似,且点的坐标分别为
  (3)设过点的直线与该二次函数的图象交于点
    将点的坐标代入中,求得
    此直线的函数表达式为
    设点的坐标为,并代入
    得
    解得(不合题意,舍去).
    
    的坐标为
    此时,锐角
    又二次函数的对称轴为
    关于对称轴对称的点的坐标为
    时,锐角
    当时,锐角
    当时,锐角

周末练习
  1.(2008年益阳)我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.
  如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.
  (1)请你求出“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;
  (2)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;
  (3)开动脑筋想一想,相信你能求出经过点D的“蛋圆”切线的解析式.
                 

  2.(2008年巴中市)已知:如图,抛物线轴交于点,点,与直线相交于点,点,直线轴交于点
  (1)写出直线的解析式.
  (2)求的面积.
  (3)若点在线段上以每秒1个单位长度的速度从运动(不与重合),同时,点在射线上以每秒2个单位长度的速度从运动.设运动时间为秒,请写出的面积的函数关系式,并求出点运动多少时间时,的面积最大,最大面积是多少?
                      3. (2008盐城)如图,直线经过点B(,2),且与x轴交于点A.
  将抛物线沿x轴作左右平移,记平移后的抛物线为C,其顶点为P.
  (1)求∠BAO的度数;
  (2)抛物线C与y轴交于点E,与直线AB交于两点,其中一个交点为F.当线段EF∥x轴时,求平移后的抛物线C对应的函数关系式;
  (3)在抛物线平移过程中,将△PAB沿直线AB翻折得到△DAB,点D能否落在抛物线C上?如能,求出此时抛物线C顶点P的坐标;如不能,说明理由.
     
参考答案
  1.
  (1)解法1:根据题意可得:A(-1,0),B(3,0);
       则设抛物线的解析式为(a≠0)
       又点D(0,-3)在抛物线上,∴a(0+1)(0-3)=-3,解之得:a=1
       ∴y=x2-2x-3自变量范围:-1≤x≤3
    解法2:设抛物线的解析式为(a≠0)
       根据题意可知,A(-1,0),B(3,0),D(0,-3)三点都在抛物线上
       ∴,解之得:
       ∴y=x2-2x-3自变量范围:-1≤x≤3;
  (2)设经过点C“蛋圆”的切线CE交x轴于点E,连结CM,
    在Rt△MOC中,∵OM=1,CM=2,∴∠CMO=60°,OC=
    在Rt△MCE中,∵OC=2,∠CMO=60°,∴ME=4
    ∴点C、E的坐标分别为(0,),(-3,0)
    ∴切线CE的解析式为
  (3)设过点D(0,-3),“蛋圆”切线的解析式为:
    y=kx-3(k≠0)
    由题意可知方程组只有一组解
    即有两个相等实根,∴k=-2
    ∴过点D“蛋圆”切线的解析式y=-2x-3.

  2.解:
  (1)在中,令
      
    
    又上      
    的解析式为
  (2)由,得     
       
  (3)过点于点
       
     
     
    由直线可得:
    中,,则
    
    
     
     
    此抛物线开口向下,时,
    当点运动2秒时,的面积达到最大,最大为

  3.解:
  (1)∵点B在直线AB上,求得b=3,
    ∴直线AB:, 
    ∴A(,0),即OA=
    作BH⊥x轴,垂足为H.则BH=2,OH=,AH=
    ∴ . 
  (2)设抛物线C顶点P(t,0),则抛物线C:, 
    ∴E(0,)
    ∵EF∥x轴,∴点E、F关于抛物线C的对称轴对称, ∴F(2t,).
    ∵点F在直线AB上, 
    ∴抛物线C为. 
  (3)假设点D落在抛物线C上,
    不妨设此时抛物线顶点P(t,0),则抛物线C:,AP=+ t,
    连接DP,作DM⊥x轴,垂足为M.由已知,得△PAB≌△DAB,
    又∠BAO=30°,∴△PAD为等边三角形.PM=AM=
    ∴
    
    
    ∵点D落在抛物线C上,
    ∴
    当时,此时点P,点P与点A重合,不能构成三角形,不符合题意,舍去.
    所以点P为(,0)
    ∴当点D落在抛物线C上顶点P为(,0).

来源:中国哲士网

教师学生家长 数九年上复习资料 备课考试教学

教育资料 [组图]二次函数的期末综合 文章

  • 上一篇文章:
  • 下一篇文章:
  •  

     

    相关文章
    数学周末练习8(圆心角、弧、弦、圆周…
    综合题——相似三角形
    数学试题选讲——图形变换
    测试初三数学试卷及答案
    数学周末练习12(二次函数)
    复习——代数
    数学周末练习4 函数(二)
    应用题——中考数学试题
    初三数学综合练习
    初中数学中考模拟试题
    圆周率的计算方法
    圆周率的计算历史
    圆周率的历史
    第二学期期末考试三年级数学试题
    初中三年级毕业考试数学试卷
    数学周末练习9(切线的判定和性质)
    初中三年级数学模拟试题
    初中三年级数学试题三月考卷
    小学三年级数学下册期中测试卷
    初三数学周末练习8(综合练习)
    中考总复习九:圆
    中心对称的定义及性质
    有关圆的诗句
    圆心角、弧、弦、圆周角
    圆周率的记忆口诀
    背圆周率小数点后位数多的人
    第二学期初三数学月考试题题及答案
    第二学期初三数学月考试题题及答案1
    初三数学周末练习7(几何计算)
    中考总复习十一:几何变换
    初三数学周末练习
    练习1(实际问题与一元二次方程)
    中考总复习七:几何计算
    总复习四:函数(二)
    数学周末练习6(和差倍分、平行与垂直…
    方程、不等式复习
    总复习一:数与式
    第二学期初三数学开学测试
    数学周末练习12(解直角三角形应用)
    解直角三角形应用
    练习5(圆综合)
    圆周角、切线的判定
    练习7(锐角三角函数的定义)
    切线长定理及其应用
    总复习三:函数(一)
    总复习六:和差倍分、平行与垂直
    初三数学周末练习
    练习2(方程、不等式)
    圆的期末综合复习
    总复习五:几何专题(一)
    正多边形和圆;弧长、扇形面积、圆锥…
    第一学期期中测验初三年级数学试卷及…
    总复习——“统计与概率”
    练习2(圆的相关概念及垂径定理)
    圆的相关概念及垂径定理
    练习5(二次函数解析式的确定及应用)
    二次函数解析式的确定及应用
    数学周末练习3函数(一)
    练习3(圆周角、切线的判定)
    切线的判定方法
    圆的期末综合
    实际问题与一元二次方程
    第一学期开学测验初三数学试卷及答案
    练习8(解直角三角形)
    解直角三角形
    随机事件与概率的意义
    二次函数的概念、图象、性质
    平行线分线段成比例定理
    相似三角形及位似的应用
    练习9(概率的计算)
    概率的计算
    第一学期期中测试初三年级数学试卷
    练习6(二次函数综合题)
    二次函数综合题
    相似三角形的判定与性质
    练习2(相似三角形的判定与性质)
    圆与圆的位置关系
    练习1(平行线分线段成比例定理)
    二次函数的应用题
    练习4(二次函数的性质)
    二次函数的定义与性质
    练习3(相似三角形单元复习)
    中考总复习八:相似、解三角形
    初三数学知识
    相似三角形单元复习
    第一学期开学检测初三数学试卷
    练习8(圆心角、弧、弦、圆周角)
    圆心角、弧、弦、圆周角
    练习7(圆的有关概念)
    圆的有关概念
    练习6(二次函数)
    数学模拟练习题(初中三年级)参考答…
    练习10(切线长定理及其应用)
    数学周末练习2(数与式)
    练习9(切线的判定和性质)
    切线的判定方法
    抛物线上给定条件的点的坐标求法
    练习12(二次函数)
    期末复习——代数
    练习11(正多边形和圆)
    练习10(二次函数期末综合复习)
    期中测验初三年级数学试卷及答案
    练习5(二次函数的应用题)
    相似三角形单元复习
    相似三角形及位似的应用
    数学周末练习2(相似三角形的判定与性…
    相似三角形的判定与性质
    二次函数的应用题
    数学周末练习3(相似三角形单元复习)
    二次函数的定义与性质
    方程(组)与不等式
    数学周末练习1(平行线分线段成比例定…
    平行线分线段成比例定理
    数学周末练习7(圆的有关概念)
    圆的有关概念
    数学周末练习6(二次函数)
    切线长定理及其应用
    数学周末练习5(二次函数的应用题)
    抛物线上给定条件的点的坐标求法
    初三数学
    初三数学试卷
    数学周末练习11(正多边形和圆)
    正多边形和圆
    圆与圆的位置关系
    数学周末练习10(切线长定理及其应用)
    锐角三角函数的定义
    方程(组)与不等式(组)
    数学周末练习4(二次函数的性质)
    数与式
    数学周末练习1(相似三角形)
    中学初三数学模考试题
    初中三年级期中数学试题
    秋季三年级数学期中考试试题
    初中三年级(上)数学教学目标单元检…
    正多边形和圆

    2004-2010  中国哲士网版权所有 引用本站内容请指明来源  给本站投稿   备案序号 蜀ICP备05009253号