设本页为首页                              加入收藏
中文域名: 古今中外.com       英文域名:www.1-123.com     丰富实用的教育教学资料
您现在的位置: 中国哲士网 >> 教育教学 >> 中小学数学 >> 九年级上学期 >> 数学九年级上学期复习 >> 正文

 

[组图]概率的计算

查询数九年上复习的详细结果
目标认知:
重点:
  古典概型的理解,列举法(列表、树状图)求概率,用频率估计概率.

难点:
  具体问题具体分析后选择方法求出概率.

要点评述与题例分析
(一)从事件发生的所有可能结果出发,考虑每种可能结果所占的可能性大小的值,然后将事件A所包含的所有可能结果的各自可能性相加

  1、一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,从中随机摸出一个,则摸到黄球的概率是(  )
  A、     B、     C、     D、

  解析:选C.
  袋中每个球被取出的机会均等,从而从袋中随机摸出一个球的所有可能情况共有8种,其中3种情况是黄球,故摸到黄球的概率是.
  错误思考方法:
  (1)任取出一球无外乎红球或黄球两种可能情况,黄球是其中一种情况,所以选B;
  (2)任取出一球无外乎红球或黄球两种可能情况,但其中红球多,故取出红球的可能性比取出黄球的可能性大,所以选D.
  评述:显然此处思路中仍有可取的地方,只是在思考取出红球的可能性比取出黄球的可能性大多少时没想清楚到底大多少,此问题恰是此处的难点.

  2、一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,它获得食物的概率是多少?
               
  解析:蚂蚁可以吃到食物的概率为,因首先蚂蚁爬向左、中、右三个大树杈的概率各是,爬向左边树杈没有食物,爬向中间或右边树杈时又各有的概率可以吃到食物,故蚂蚁可以吃到食物的概率为.
  也可换一个角度思考,从图左边第一个小树杈顺时针数起,蚂蚁爬到每个树杈的概率依次为:
  ,可以吃到食物的情况只有两个的情况.
  经典错误:很多同学忽视对古典概型的理解,认为蚂蚁总共面对7条路的选择,其中有食物的路为2条,故蚂蚁可以吃到食物的概率为.
  评述:在用穷举法求概率时,一定要关注你所举出的各种情况发生的可能性到底是多少?若有其中的一些情况你不能说清楚其可能性大小,则可以肯定你的思考方法有问题,所有情况没列全或分列的标准不统一,需重新考虑.

(二)该试验所有可能发生的结果有n种,每种结果发生的可能性相等.直接考虑事件A 包含的可能结果种数为m,则事件A发生的概率为:.

  3、(本小题5分)
  在一个布口袋中装着只有颜色不同,其它都相同的白、红、黑三种颜色的小球各1只,甲乙两人进行摸球游戏;甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球.
  (1)试用树状图(或列表法)表示摸球游戏所有可能的结果;
  (2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为负,试求乙在游戏中能获胜的概率.

  解:
  
(1)树形图来找出所有可能情况
       
    或用列表法思考所有情况
    列表如下
      甲
  乙
白  白 红 白 黑  白
白  红 红 红 黑  红
白  黑 红 黑 黑  黑
  (2)由树形图可得,该试验的所有可能情况有9种,其中乙摸到与甲相同颜色球有三种情况,每种情况出现的机会均等,乙取胜的概率为

  4、一个袋子中装有红、黄、蓝三个小球,它们除颜色外均相同.
  (1)如果从中随机摸出一个小球,那么摸到蓝色小球的概率是多少?
  (2)小王和小李玩摸球游戏,游戏规则如下:先由小王随机摸出一个小球,记下颜色后放回,小李再随机摸出一个小球,记下颜色.当2个小球的颜色相同时,小王赢;当2个小球的颜色不同时,小李赢.请你分析这个游戏规则对双方是否公平?并用列表法或树状图法加以说明.

  解析:
  
(1)每个小球被摸到的机会均等,故P(摸到蓝色小球)= .     
  (2)列表思考所有可能情况:
     小李
 小王
红,红 红,黄 红,蓝
黄,红 黄,黄 黄,蓝
蓝,红 蓝,黄 蓝,蓝
  由上表可知小王和小李先后摸球的所有情况有9种,每种情况出现的可能性相同,其中小王嬴的情况有3种,小李嬴的情况有6种                
  ∴ P(小王赢)==,  P(小李赢)==
  ∵
  ∴此游戏规则对双方是不公平的.

  5、如图,两个转盘中指针落在每个数字上的机会相等,现同时转动A、B两个转盘,停止后,指针各指向一个数字. 小力和小明利用这个转盘做游戏:若两数之积为非负数则小力胜;否则,小明胜. 你认为这个游戏公平吗?请你利用列举法说明理由.
               
  解:列表考虑所有可能情况:

-1 0 2 1
1 -1 0 2 1
-2 2 0 -4 -2
-1 1 0 -2 -1
  由列表可知,由两个转盘各转出一数字作积的所有可能情况有12种,每种情况出现的可能性相同,其中两个数字之积为非负数有7个,负数有5个,
  ∴P(小力获胜)=,P(小明获胜)=.
  ∴这个游戏对双方不公平.

  6、“石头、剪刀、布”是广为流传的游戏,游戏时比赛各方做“石头”、“剪刀”、“布”中手势的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,同种手势或三种手势循环不分胜负继续比赛,假定甲、乙、丙三人都是等可能的做这三种手势,那么:
  (1)一次比赛中三人不分胜负的概率是多少?
  (2)比赛中一人胜,二人负的概率是多少?

  解析:当一次实验要涉及3个或3个以上的因素时,列表就有些不方便了,通常采用树形图.
     为方便表述,我们可以设:剪刀—A,石头—B,布—C,出3人出手势的树形图:
      
     由树形图可以看出,所有可能出现的情况共有27种,
  (1)其中不分胜负的情况有:AAA,BBB,CCC,ABC,ACB,BAC,BCA,CAB,CBA共9种;
    所以,P(三人不分胜负)=
  (2)一人胜二人负的有:AAB,ABA,ACC,BAA,BBC,BCB,CBB,CAC,CCA,共9种;
    所以,P(一人胜二人负)==.

  7、经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,三辆汽车经过这个十字路口,求下列事件的概率:
  (1)三辆车全部直行;
  (2)两辆车向右转,一辆车向左转;
  (3)至少有两辆车向左转.

  解析:用树图表示出三辆车经过路口时所有可能出现的选择:
   
    由树形图可以看出,三辆车经过路口时所有可能出现的选择共有27种,
  (1)三辆车全部继续直行的结果只有一个,所以,P(三辆车全部继续直行)=
  (2)两辆车向右转,一辆车向左转的结果有3个,所以,P(两辆车向右转,一辆车向左转)==
  (3)至少有两辆车向左转的结果有7个,所以,P(至少有两辆车向左转)=.
  评述:以上几例给我们提供了:

  (1)计数一种随机试验所有可能情况的方法:
  列表法和树形图法,显然两种方法都很有效地不重不漏地计数出随机试验的所有可能出现结果,其中树形图法要比列表法适用范围稍广一些,比如后两题若用列表法就有些不合适,但树形图若对题目理解不深会有些困难,比如例7会有些同学将树形图成:
  学生错误的树状图
         

  (2)概率的古典定义,古典概型的概率计算:
  计数该试验所有可能发生的结果有n种,每种结果发生的可能性相等,考虑事件A 包含的可能结果种数m,则事件A发生的概率为:.
  这里要关注“每种结果发生的可能性相等”,这对我们今后进一步学习概率解决概率问题很重要.

(三)用频率估计概率
  8、在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:
摸球的次数 100 150 200 500 800 1000
摸到白球的次数 58 96 116 295 484 601
摸到白球的频率 0.58 0.64 0.58 0.59 0.605 0.601

  (1)请估计:当很大时,摸到白球的频率将会接近__________;
  (2)假如你去摸一次,你摸到白球的概率是________,摸到黑球的概率是_________;
  (3)试估算口袋中黑、白两种颜色的球各有多少只?
  (4)解决了上面的问题,小明同学猛然顿悟,过去一个悬而未决的问题有办法了.这个问题是: 在一个不透明的口袋里装有若干个白球,在不允许将球倒出来数的情况下,如何估计白球的个数(可以借助其他工具及用品)? 请你应用统计与概率的思想和方法解决这个问题,写出解决这个问题的主要步骤及估算方法.

  解析:
  
(1)0.6
  (2)0.6 , 0.4 ;
  (3)白球12,黑球8;
  (4)尝试自己设计出一种方案?
  评述:
  
(1)概率这一概念是建立在频率这一统计量的稳定性基础之上的,相同条件下,一个事件发生的概率是一个常数,是由事件固有的属性决定的,但是如果用实验估算概率的方法,频率会随着样本空间的变化而变化,虽然随着样本的增加,频率会越来越集中于一个常数,这个常数就是概率(统计概率的定义),但从实质上来讲,频率仍是一个随机数,而概率却是一个科学的确定值,所以用频率估计出来的概率有时是不精确的,会有误差.
  (2)用频率估计概率可以解决一些实际问题,在生产实践上人们经常用蒙特卡罗方法:又称随机抽样或统计试验方法,其基本原理及思想是,当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,他们可以通过某种试验的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并用他们作为问题的解.其思想依据是:理论概率=试验概率.常用方法是:先做记号,再数记号,然后统计频率,分析规律概括得出概率.

  9、为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼_________条.

  解析:设池塘里有鱼n条,则
      可解得n=20000.
  评述:这是一道统计概率知识的具体应用题,最早出现为七年级活动课,很多同学可能都还有印象,用这一思路我们可以较为准确地估计很多我们想知道的数据,如:混合杂粮中各种粮食的比例 ,面对一批产品的正品率等.

  10、小明在操场上做游戏,他发现地上有一个不规则的封闭图形ABC.为了知道它的面积,小明在封闭图形内划出了一个半径为1米的圆,在不远处向圈内掷石子,且记录如下:
50次 150次 300次
石子落在⊙O内
(含⊙O上)的次数m
14 43 93
石子落在阴影内的次数n 19 85 186

   你能否求出封闭图形ABC的面积?试试看.

  解析:随实验次数的增加,可以看出石子落在⊙O内(含⊙O上)的频率趋近0.5,有理由相信⊙O面积会占封闭图形ABC面积的一半,所以求出封闭图形ABC的面积为2.

来源:中国哲士网

教师学生家长 数九年上复习资料 备课考试教学

教育资料 [组图]概率的计算 文章

  • 上一篇文章:
  • 下一篇文章:
  •  

     

    相关文章
    数学周末练习8(圆心角、弧、弦、圆周…
    综合题——相似三角形
    数学试题选讲——图形变换
    测试初三数学试卷及答案
    数学周末练习12(二次函数)
    复习——代数
    数学周末练习4 函数(二)
    应用题——中考数学试题
    二次函数的期末综合
    初中数学中考模拟试题
    圆周率的计算方法
    圆周率的计算历史
    圆周率的历史
    第二学期期末考试三年级数学试题
    初中三年级毕业考试数学试卷
    数学周末练习9(切线的判定和性质)
    初中三年级数学模拟试题
    初中三年级数学试题三月考卷
    小学三年级数学下册期中测试卷
    初三数学周末练习8(综合练习)
    中考总复习九:圆
    中心对称的定义及性质
    有关圆的诗句
    圆心角、弧、弦、圆周角
    圆周率的记忆口诀
    背圆周率小数点后位数多的人
    第二学期初三数学月考试题题及答案
    第二学期初三数学月考试题题及答案1
    初三数学周末练习7(几何计算)
    中考总复习十一:几何变换
    初三数学周末练习
    练习1(实际问题与一元二次方程)
    中考总复习七:几何计算
    总复习四:函数(二)
    数学周末练习6(和差倍分、平行与垂直…
    方程、不等式复习
    总复习一:数与式
    第二学期初三数学开学测试
    数学周末练习12(解直角三角形应用)
    解直角三角形应用
    练习5(圆综合)
    圆周角、切线的判定
    练习7(锐角三角函数的定义)
    切线长定理及其应用
    总复习三:函数(一)
    总复习六:和差倍分、平行与垂直
    初三数学周末练习
    练习2(方程、不等式)
    圆的期末综合复习
    总复习五:几何专题(一)
    正多边形和圆;弧长、扇形面积、圆锥…
    第一学期期中测验初三年级数学试卷及…
    总复习——“统计与概率”
    练习2(圆的相关概念及垂径定理)
    圆的相关概念及垂径定理
    练习5(二次函数解析式的确定及应用)
    二次函数解析式的确定及应用
    数学周末练习3函数(一)
    练习3(圆周角、切线的判定)
    切线的判定方法
    圆的期末综合
    实际问题与一元二次方程
    第一学期开学测验初三数学试卷及答案
    练习8(解直角三角形)
    解直角三角形
    随机事件与概率的意义
    二次函数的概念、图象、性质
    平行线分线段成比例定理
    相似三角形及位似的应用
    初三数学综合练习
    练习9(概率的计算)
    第一学期期中测试初三年级数学试卷
    练习6(二次函数综合题)
    二次函数综合题
    相似三角形的判定与性质
    练习2(相似三角形的判定与性质)
    圆与圆的位置关系
    练习1(平行线分线段成比例定理)
    二次函数的应用题
    练习4(二次函数的性质)
    二次函数的定义与性质
    练习3(相似三角形单元复习)
    中考总复习八:相似、解三角形
    初三数学知识
    相似三角形单元复习
    第一学期开学检测初三数学试卷
    练习8(圆心角、弧、弦、圆周角)
    圆心角、弧、弦、圆周角
    练习7(圆的有关概念)
    圆的有关概念
    练习6(二次函数)
    数学模拟练习题(初中三年级)参考答…
    练习10(切线长定理及其应用)
    数学周末练习2(数与式)
    练习9(切线的判定和性质)
    切线的判定方法
    抛物线上给定条件的点的坐标求法
    练习12(二次函数)
    期末复习——代数
    练习11(正多边形和圆)
    练习10(二次函数期末综合复习)
    期中测验初三年级数学试卷及答案
    练习5(二次函数的应用题)
    相似三角形单元复习
    相似三角形及位似的应用
    数学周末练习2(相似三角形的判定与性…
    相似三角形的判定与性质
    二次函数的应用题
    数学周末练习3(相似三角形单元复习)
    二次函数的定义与性质
    方程(组)与不等式
    数学周末练习1(平行线分线段成比例定…
    平行线分线段成比例定理
    数学周末练习7(圆的有关概念)
    圆的有关概念
    数学周末练习6(二次函数)
    切线长定理及其应用
    数学周末练习5(二次函数的应用题)
    抛物线上给定条件的点的坐标求法
    初三数学
    初三数学试卷
    数学周末练习11(正多边形和圆)
    正多边形和圆
    圆与圆的位置关系
    数学周末练习10(切线长定理及其应用)
    锐角三角函数的定义
    方程(组)与不等式(组)
    数学周末练习4(二次函数的性质)
    数与式
    数学周末练习1(相似三角形)
    中学初三数学模考试题
    初中三年级期中数学试题
    秋季三年级数学期中考试试题
    初中三年级(上)数学教学目标单元检…
    正多边形和圆

    2004-2010  中国哲士网版权所有 引用本站内容请指明来源  给本站投稿   备案序号 蜀ICP备05009253号