设本页为首页                              加入收藏
中文域名: 古今中外.com       英文域名:www.1-123.com     丰富实用的教育教学资料
您现在的位置: 中国哲士网 >> 教育教学 >> 中小学数学 >> 八年级下学期 >> 数学八年级下学期练习 >> 正文

 

[组图]数据的分析

查询数八年下练习的详细结果
数据的分析
一、本章的地位和作用
  数据的分析这一章,是统计部分的最后一章。主要学习分析数据的集中趋势和离散程度的常用方法。本章主要研究平均数(主要是加权平均数),中位数,众数,极差,方差等统计量的统计意义。学习如何利用这些统计量分析数据的集中趋势和离散情况。并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想。这一章作为数据处理的最后一个环节,与前两个学段相互联系,学生的学习呈现出螺旋上升的形式,使学生对于分析数据的知识和方法形成整体认识,其意义深远。

二、本章知识结构


三、本章重点和难点
  重点:对分析数据的集中趋势和离散程度的常用方法的学习及应用。
  对点:(1)体会“权”的差异性对加权平均数据结果的影响。正确理解“权重”的含义。
     (2)在不同情景中平均数,中位数,众数三个数据的比较与选择应用。
     (3)体会极差受极端值影响较大的原因,关注极差,方差是描述一组数据波动的量。

四、内容安排:

第一节 数据的代表
  数据的代表是指利用平均数、中位数、众数等刻一组数据的集中趋势。所谓集中趋势是指一组数据向某一中心值靠拢的倾向,测量集中趋势就是寻找数据一般水平的代表值或中心值。
一、平均数
1.学习平均数的意义
  在刻一组数据的集中趋势的统计量中,以平均数最为重要,其应用最为广泛。这是因为平均数是一组数据的“重心”,是度量一组数据的波动大小的基准,同时学习平均数也是学习方差的基础。

2.平均数的常见计算方法
  (1)求、…,的算术平均数,;※如果这n个数都比较大,
     并且又都在同一个数附近波动的话,那么我们可以这样计算:,…,
     ,求,则
  (2)如果这n个数中有一些数字重复出现的话,也可以这样来求算术平均数;若出现次,出现
     次,…,出现次,…,(),
     那么
  (3)若n个数、…、的权分别是、…、,则叫做这n个
     数的加权平均数。数据的权能够反映数据的相对“重要程度”,对于同样的一组数据,若权重不
     同,则加权平均数很可能是不同的(课本125页例1);
  注:
  a.再次体会2中的式子,可以看作是求、…、这k个数据的加权平均数,中就是的权;
  b.事实上加权平均并非平均数的又一概念的形成,只是对于数据较多而又重复时,一种计算平均数的
    简便算法。
  (4)根据频数分布表求平均数的问题,这也是一种典型的求加权平均数的问题,作法是:用各组的组
     中值代表各组的实际数据,把各组的频数看作相应组中值的权,这样求是因为数据分组后原始数
     据并不清楚,所以只能用各组的组中值和各组频数近似地计算一组数据的平均数,所以这样计算
     的加权平均数是一个近似的估计值,这也体现了统计学思维方式。
  (5)平均数的计算公式并不难,但是在教学中,也应注意引领学生实际计算,在公式的使用过程中,
     有意识的培养学生观察能力,努力发现巧算的方法,如凑整,找规律等,努力提高学生的计算的
     准确率。

例题选讲:
  1.求下列各组数据的平均数。
  (1)6,1,3,10,9,7;        (2)29,39,31,37,38,36;
  (3)2,2,4,8,10,7,8,4,10,4,3,2,2,10,2。
  答案:(1)6 (2)35 (3)5.2

  2.(1)如果一组数据85,80,x,90的平均数是85,则x=________。
         解:
          
          

      (2)已知 的平均数是,那么的平均数是_____。
         答案:
      (3)已知数据 的平均数是2,则数据,的平均数是___.
         答案:6
      (4)若 这三个数的平均数为,则这三个数的平
         均数为________。
         解:
           
           
           
      (5)有8个数的平均数是11,还有12个数的平均数是12,则这20个数的平均数是________;
         有m个数的平均数是x,还有n个数的平均数是y,则这(m+n)个数的平均数是______;
         解:.

  3.填空:
  (1)如果数据2,3,x,4的平均数3,则x=________。
  (2)某单位举行歌咏比赛,分两场举行,第一场8名参赛选手的平均成绩88分,第二场4名参赛选手的
     平均成绩94分,那么这12名选手的平均成绩是________分。
  (3)某学生使用计时器求30个数据的平均数时,错将其中一个数据10.5输入为15,那么由此求出的平
     均数与实际平均数的差是________。
  (4)已知数据 的平均数为的平均数为,则数据
     的平均数为________。
  (5)设的平均数为的平均数为N,N、c的平均数为P,若,则M与P的
     大小关系为________。
  答案:(1)3 (2)90 (3)0.15 (4) (5)

  4.(2006温州市)某公司欲招聘一名部门经理,对甲、乙两名候选人进行笔试和面试考核,甲、乙两名候选人的笔试成绩分别是95和93分,他们的面试成绩如表:
候选人 评委1 评委2 评委3 评委4 评委5
87 93 90 91 89
94 90 95 92 94
  a) 分别求出甲、乙两名候选人面试成绩的平均分;
  b) 公司决定:笔试成绩的40%与面试成绩的平均分的60%的和作为综合成绩,综合成绩高者将被录用。
    请你通过计算判断谁将被录用。
  答案:a) 甲:90分,乙93分
     b)甲:92分,乙:93分,录用乙。

  5.老师在计算学期总平均分的时候按照如下标准:作业点10%,测验占30%,期中占35%,期末考试占35%,小丽和小明的成绩如下表:
学生 作业 测验 期中考试 期末考试
小丽 80 75 71 88
小明 76 80 68 90
  分别求出小丽和小明的总平均成绩。
  答案:小丽86.15分,小明86.9分

  6.某校七(7)班50名学生的校服尺码经统计如下:
尺码(单位:cm) 组中值 人数
145 7
155 30
165 10
175 3
  这50名学生的校服尺码平均数是多少厘米?
  答案:156.8厘米

  7.某西瓜种值户,今年他的西瓜结了1000个,为了了解这些西瓜的总重量,他从这1000个西瓜中随机抽取了20个,称得的重量如下表:
重量(千克) 1.5 2 3 4 5
数量(个) 4 5 2 5 4
  估计这1000个西瓜的总重量为________
  答案:3100千克

二、中位数,众数
1.中位数的定义:
  将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数,中位数的位置(n为数据的个数);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。

2.中位数是一个位置代表值,利用中位数分析数据可以获得一些信息。
  如果已知一组数据的中位数,那么可以知道,小于等于或大于等于这个中位数的数据约各占一半。注意:当数据个数是偶数时,中位数可能并不是这组数据中的某个数。

3.众数的定义:
  一组数据中出现次数最多的数据就是这组数据的众数。

4.平均数、中位数和众数是度量集中趋势的三个主要特征数,
  它们具有不同的特点和应用场合,掌握它们之间的关系和各自的不同特点,有助于我们在实际应用中选择合理的统计量来描述数据的集中趋势。
  平均数是通过计算获得的,利用了全部数据信息,它具有优良的数学性质,是实际中应用最广泛的集中趋势度量值,但平均数的主要缺点是易受数据极端的影响。(所以实际中也常采用去尾平均数)
  中位数是一组数据中间位置上的代表值,它的优点是只需要很少的计算,不受极端值的影响,这在有些情况下是一个优点。
  众数是一组数据的峰值,它是一种位置代表值,不受极端值的影响,其缺点是具有不唯一性,只要频数一样且都是最大,那么就都是众数,所以众数可能有两个或多个,也可能没有众数。

例题选讲:
  1.
  (1)数据3,4,3,2,5,5,2,5,4,1的平均数是________,众数是________,中位数是________。
     解:
       由小到大排列为:1,2,2,3,3,4,4,5,5,5
      
       答案:3.4;5;3.5
  (2)若一组数据,-3,3,-2,1,6的中位数是1,则x=________。
     解:由小到大排列为-3,-2,1,3,6,
       因为中位数是1,所以x应该位于1的左或右
       即,所以
  (3)某餐厅共有7名员工,所有员工的工资情况如下表所示:
人员 经理 厨师 会计 服务员
人数 1 2 1 3
工资额 1600 600 520 340
     则餐厅所有员工工资的众数,中位数是( )
     A.340,520     B.520,340
     C.340,560     D.560,340
     解:众数是340,中位数是第4个数是520,故选A。
     点拨:由于分工不同,员工的工资差别很大,分析员工的工资情况应视情况而定。

  2.在育民中学举办的“艺术节”活动中,八·二班学生成绩十分突出,小刚将全班获奖作品情况绘成条形统计图如下。(成绩为60分以上的都是获奖作品)
              
  (1)请根据图形计算出八·二班学生有多少件作品获奖?
  (2)用计算器求出八·二班获奖作品的平均成绩。
  (3)求出这次活动中获奖作品成绩的众数和中位数。
  答案:(1)4+8+12+6+2=32(件)
     (2)(分)
     (3)众数:80分 中位数:80分

  3.(1)数据92,96,98,100,x众数是96,则其中中位数和平均数分别是( )
         A.97,96    B.96,96.4    C.96,97    D.98,97
      (2)某班7个学习小组人数如下:5,5,6,x,7,7,8。
         已知这组数据的平均数是6,则这组数据的中位数是( )
         A.7    B.6    C.5.5    D.5
      (3)在2004年全国初中数学联赛中,抽查了某县10名同学的成绩如下:78,77,76,74,
         69,69,68,63,63,63。在这一问题中,样本容量是________,众数是________,
         中位数是________。
      (4)已知一组数据:-2,-2,3,-2,x,-1。若这组数据的平均数是0.5,则这组数据的中
         位数是________。
      (5)由小到大排列的一组数据,其中每个数据都小于-1,则对于样本
         1、的中位数为________。
  答案:(1)B (2)B (3)10,63,69 (4)-1.5 (5)

  4.一名警察在高速公路上随机观察7辆车的速度,观后他给出这样一份报告:
  调查时间:2008年1月1日8:00—8:15
  调查地点:高速公路某路段
  调查车辆数目:7辆
  调查结果如下表:
车序号 1 2 3 4 5 6 7
车速(千米/时) 66 57 71 54 69 58 69
  (1)样本数据的中位数,众数各是多少?
  (2)若只调查序号1—6的车,那么这6个数据的中位数,众数各是多少?
  答案:(1)中位数:66;众数:69。
     (2)中位数:62;众数则不存在。
  5.某校艺术节汇演,由参加演出 10个班各派一名代表担任评委,给演出评分,甲,乙两班所得成绩如下:
编号 1 2 3 4 5 6 7 8 9 10
8 7 7 4 8 7 8 8 8 8
7 8 8 10 7 7 8 7 7 7
  (1)若采用平均数计算甲,乙两班谁获胜?你认为公平吗?为什么?
  (2)采用怎样的方法,对参赛班级更为公平,如果采用你提供的方法,甲、乙两班谁会胜?
  答案:(1)甲:7.3 乙:7.6 乙胜,不公平。4号评委不公。
     (2)去掉最高分和最低分,再算平均分,则甲胜。

第二节.数据的波动
  数据的集中趋势只是数据分布的一个特征,它所反映的是数据向其中心值聚集的程度。而各数据之间的差异情况如何呢?这就需要考察数据的分散程度,也称波动情况。数据的分散程度是数据分布的另一个重要特征,它所反映的是各个数据远离其中心值的程度,因此也称离中趋势.刻画集中趋势的特征数是对数据一般水平的一个概括度量,它对一组数据的代表程度取决于该组数据的离散水平.数据的离散程度越大,刻集中趋势的特征数对该数据的代表性就越差,离散程度越小,其代表性越好。
一、极差
1.极差的概念:
  一组数据中的最大数据与最小数据的差叫做这组数据的极差。

2.极差是刻数据离散程度的最简单的统计量,
  计算简单,容易理解,由于极差只是利用了一组数据两端的信息,所以它受极端值的影响较大。不能反映出中间数据的分散状况,提供的只是数据粗略的分散情况。但在有些情况下,我们只需要知道极差就够了。例如,天气预报,收入差距等。
  1.
  (1)一组数据3,-1,0,2,x的极差是5,且x为自然数,则x=________。
  (2)一组数据的极差是0,这说明这组数据________。
  (3)若数据,…,的极差为,则数据,……,的极差为_______,
     ,…,的极差为________。
  (4)若10个数的平均数是3,极差是4,则将这10个数都扩大10倍,则这组新数据的平均数是______,
     极差是________。
  答案:(1)4 (2)相等 (3) (4)30,40;
  注:可依学生情况补充平均差:
  一组数据的平均差是指各个数据与平均数的差的绝对值的平均数。这也是一个衡量一组数据波动大小的统计量。

二、方差
  1.方差的概念是本章的难点,因此在进行这部分教学时,一定要使学生对方差的统计意义以及方差是如何刻数据的离散程度等有较深刻的认识,对为什么方差越大,数据的波动就大,方差越小,数据的波动就越小,应作较细致的讲解(课本139页)。
  2.方差的定义:设有n个数据、…、,各数据与它们的平均数的差的平方分别是、…、,我们用它们的平均数,即用
  来衡量这组数据的波动大小,并把它叫做这组数据的方差,记作(方差=各数与其平均数差的平方的平均数)
  3.从方差的定义可以看出,要求方差,必须先求平均数,同时要想利用方差来比较两组数据的波动情况,也必须是在这两组数据的平均数相同或相近的前提下,最后还可以得出方差的单位应是原数据单位的平方。
  1.(1)刘翔住出征北京奥运会前刻苦进行110米栏训练,教练对他20次的训练成绩进行统计分
         析,判断他的成绩是否稳定,则教练需要知道他20次成绩的 ( )
         A.众数    B.平均数    C.频数    D.方差

      (2)某中学人数相等的甲,乙两班学生参加同一次数学测验,两班平均分和方差分别为
         分,分;甲班方差为245,乙班方差为190,那么成绩较为整齐的是( )
         A.甲班    B.乙班    C.两班一样整齐    D.无法确定
      (3)已知一个样本的方差,则这样本的平均数是______。
  答案:(1)D(2)B(3)205

三、知识的补充
1.数据的标准差
  是方差的算术平方根,即,标准差的单位与原始数据单位相同。

2.平均数、方差的运算性质
  (1)如果一组数据、…、的平均数是,方差是,那么一组新数据
     …、的平均数是,方差仍是(为什么?)
  (2)如果一组数据、…、的平均数是,方差是,那么一组新数据、…、
     的平均数是,方差是,标准差是
  (3)如果一组数据、…、的平均数是,方差是,那么一组新数据
     …、的平均数是,方差是,标准差是,其中为常数。

※3.方差的简化公式
  如果一组数据、…、中,各数据的平均数是,那么它们的方差可以用下面的公式计算:
  (1)
  (2),其中,…,是接
     近这组数据的平均数的一个常数

4.数据的平均差
  一组数据的平均差是指各个数据与平均数的差的绝对值的平均数,即
  ,这也是一个衡量一组数据波动大小的统计量。
  2.如图,公园里有两条石阶路,哪条路走起来更舒服?为什么?(图中数字表示每一组的高度,单位:厘米)
              
  答案:(1)更舒服,因为石阶数的方差小。

  3.甲、乙两台机床同时加工直径为100毫米的零件,为了检验产品的质量,从产品中各随机抽出6件进行测量,测得数据如下(单位:毫米):
  甲机床:99,100,98,100,100,103
  乙机床:99,100,102,99,100,100
  请分析哪台机床加工的零件更符合要求。
  答案:甲、乙两组数据的平均数相同,进一步求方差,乙的方差小,故选乙。

来源:中国哲士网

教师学生家长 数八年下练习资料 备课考试教学

教育资料 [组图]数据的分析 文章

  • 上一篇文章:
  • 下一篇文章:
  •  

     

    相关文章
    一元二次方程的根的判别式
    初二数学周末练习5(矩形的性质与判定…
    初二数学周末练习1(全等三角形与三角…
    一次函数的应用
    初二数学周末练习11(一次函数的图象…
    一次函数的图象与性质
    初二数学周末练习7(最值问题专题(轴…
    初二数学练习题
    初二数学练习
    分式方程
    平行四边形的性质和判定
    初二数学分式混合运算周末练习
    初二数学周末练习6(菱形的性质与判定…
    初二数学周末练习3(反比例函数)
    反比例函数
    初二数学周末练习2(反比例函数的图象…
    反比例函数的图象及性质
    分式混合运算
    四边形总复习
    第一学期初二期中数学试卷
    初二数学周末练习8(平方根)
    平方根
    初二数学周末练习14(二次根式)
    周末练习11(数据的分析)
    二次根式的运算和化简(续)
    最值问题专题(轴对称的应用)
    周末练习10(四边形复习)
    四边形复习
    八年级第二学期数学期末复习――代数…
    初二数学周末练习17(四边形复习)
    四边形复习
    初二数学练习题(解答题)
    初二数学练习题常见解题方法汇总
    初二数学周末练习1(分式方程)
    初二数学周末练习3(轴对称)
    菱形的性质与判定
    分式期末复习
    矩形的性质与判定
    第二学期初二数学期中检测
    周末练习9(梯形同步练习)
    梯 形
    周末练习8(初二数学《四边形》测试题…
    周末练习7(四边形部分的中考链接)
    初二数学周末练习4(平行四边形)
    第一学期期末八年级数学试卷分析
    初二数学周末练习13(二次根式化简和…
    二次根式化简和运算
    二次根式
    函数的图象和正比例函数
    一元二次方程的解法
    初二数学试卷
    初二 数学试卷
    初二数学周末练习16(一元二次方程的根…
    初二数学周末练习22(暑期练习—一元…
    暑期练习—一元二次方程专题
    初二数学周末练习21(暑假练习—三角…
    暑期练习—三角形、梯形的中位线
    初二数学周末练习20(旋 转)
    下学期初二数学开学检测试卷
    初二数学周末练习19(八年级下学期数…
    轴对称复习
    轴对称
    初二数学周末练习3(角平分线性质)
    角平分线性质
    初二数学周末练习2(全等三角形的判定…
    全等三角形的判定和构造
    初二周末练习6(等腰三角形(二))
    等腰三角形(二)
    初二数学周末练习5(等腰三角形(一)…
    等腰三角形(一)(概念、性质及判定…
    初二数学周末练习15(一元二次方程的解…
    初二数学周末练习9(变量与函数)
    全等三角形与三角形全等的判定
    旋  转
    初二数学周末练习14(分式的运算及分…
    分式的运算及分式方程
    初二数学周末练习13(分式的概念和性…
    分式的概念和性质
    初二数学周末练习12(一次函数的应用…
    初二数学周末练习17(一次函数期末复…
    一次函数期末复习
    初二数学周末练习16(轴对称复习)
    周末练习12(二次根式)
    一次函数练习卷
    初二数学周末练习10(函数的图象和正…
    八年级下学期数学期末复习――几何部…
    寒假专题二(一次函数的综合应用)
    寒假专题一(一次函数的几何应用)
    第一学期初二期末数学试卷
    初二数学周末练习18(全等三角形之一期…
    全等三角形之一期末复习
    初二暑假开学统测
    初二数学单元练习
    初二数学家教练习题(三角函数)
    初二数学家教练习题(四边形性质)
    变量与函数
    初二数学周末练习15(分式期末复习)

    2004-2010  中国哲士网版权所有 引用本站内容请指明来源  给本站投稿   备案序号 蜀ICP备05009253号