九年级数学(上)期末试题 姓名: 成绩:
填空题:(耐心填一填,你一定能填好!每空3分,共36分)
1、()0= ;()-2= 。
2、函数y=中自变量x的取值范围是 。
3、当m= 时,方程是一元二次方程。
4、如果方程3x2+x+a=0有实数根,则a的取值范是 。
5、方程x2+5x-m=0的一个根是2,则m= ;另一个根是 。
6、等腰梯形ABCD中,AB∥CD,对角线AC与BD相交与O,请写出图中一对相等的线段
。 D C 7、正方形ABCD的边长是2cm,以直线AB为轴旋转一周,所得 O
到的圆柱的侧面积为 cm2. A B
8、如图、AB是⊙O的直径,弦CD⊥AB,垂足为P,如AP∶PB=1∶4,CD=8,则AB= .
C
A P O B(8题)
(9)
D
9、如图,在⊙O中,AB是⊙O的直径,∠D=40°,则∠AOC的度数为_____ _
10、如图,已知AC=BD,则再添加条件 ,可证出△ABC≌△BAD.
二、选择题:(精心选一选,你一定能选准!3×10=30分)
1、下列运算正确的是( )
A、 B、 C、 D、
2、计算的结果是( )
(A) (B) (C) (D)
3、关于的一元二次方程的一个根是0,则的值为( )
(A)1 (B) (C)1或 (D)0.5
4、如图,两个标有数字的轮子可以分别绕轮子中心旋转,旋转停止时,每个轮子上方的箭头各指着轮子上的一个数字,这两个数字和为偶数的概率是( )
(A) (B) (C) (D)
5、下列说法正确的是( )
(A)三点确定一个圆。 (B)一个三角形只有一个外接圆。
(C)和半径垂直的直线是圆的切线。 (D)三角形的内心到三角形三个顶点距离相等。
6、关于的方程有两个不相等的实数根,则的取值范围是( )
A. B. C. D.
7、下列五个命题:(1)若直角三角形的两条边长为5和12,则第三边长是13;
(2)=a(a≥0);(3)若点P(a,b)在第三象限,则点P'(-a,-b+1)在一象限;(4)对角线互相垂直且相等的四边形是正方形;(5)两边及第三边上的中线对应相等的两个三角形全等。 其中正确命题的个数是( )
A.2个 B.3个 C.4个 D.5个
8、若圆锥的母线长为4cm,底面半径为3cm,则圆锥的侧面展开图的面积是( ) (A); (B); (C); (D);
9、一个直角三角形斜边长为,内切圆半径为,则这个三角形周长是( )
A、 B、 C、 D、
10、下列说法错误的是( )
A、顶角和腰对应相等的两个等腰三角形全等B、顶角和底边对应相等的两个等腰三角形全等C、斜边对应相等的两个等腰直角三角形全等 D、两个等边三角形全等
三、解答题:(细心做一做,你一定行!66分)
1、(6分)计算:
2、(6分)解方程:x2+2x-3=0。
3、解方程:(6分) 4、解方程 (6分)
5、化简:(6分)
6、(8分)已知:关于x的方程x2-kx-2=o①、求证:方程有两个不相等的实数根。②、设方程的两个根为x1,x2如果2(x1+x2)>x1x2,求k的取值范围。
7、(6分)画图:已知一等腰三角形的底边长和腰长,求作等腰三角形。
8、(6分)如图,在平形四边形ABCD中,E、F是对角线AC上的两点,且AE=CF。求证:DE=BF
9、(6分)一布袋中有红、黄、白三种颜色的球各一个,它们除颜色外其它都一样。小亮从布袋中摸出一个球后放回去摇匀,再摸出一个球。请你利用列举法(列表或画树状图)分析并求出小亮两次都能摸到白球的概率。
10、(8分)同一底上的两底角相等的梯形是等腰梯形吗?如果是,请给出证明(要求画出图形,写出已知、求证、证明);如果不是,请给出反例(只需画图说明).
11、(8分)如图8,PA切⊙O于点A,PBC交⊙O于点B、C,若PB、PC的长是关于x的方程的两根,且BC=4,求(1)m的值;(2)若PA2=PB?PC,求PA的长;
12、(10分)今年五月,某工程队(有甲、乙两组)承包人民路中段的路基改造工程,规定若干天内完成.(1)已知甲组单独完成这项工程所需时间比规定时间的2倍多4天,乙组单独完成这项工程所需时间比规定时间的2倍少16天.如果甲、乙两组合做24天完成,那么甲、乙两组合做能否在规定时间内完成?(2)在实际工作中,甲、乙两组合做完成这项工程的后,工程队又承包了东段的改造工程,需抽调一组过去,从按时完成中段任务考虑,你认为抽调哪一组最好?请说明理由.
13、(12分) 如图,AB、AC分别是⊙O的直径和弦,D是劣弧AC的中点,DE⊥AB于H,交⊙O于点E,交AC于点F.
图中有哪些必相等的线段?(要求:不要标注其它字母,找结论的过程中所作的辅助线不能出现在结论中,不必写出推理过程.)
若过C点作⊙O的切线PC交ED延长线于P点,(请补全图形),
求证:PF2=PD·PE;
已知AH=1,BH=4,求PC的长. C
D
F
A H O B
E
答案:
一、填空题:
1、1,9; 2、x≤5且x≠-1; 3、m=3; 4、a≤; 5、14,-7;6、AC=BD; 7、8 8、10; 9、100° 10、∠CAB=∠DBA
选择题:BBBCADABBD
解答题:
1、4-8×0.125+1+1=5
2、(x-1)(x+3)=0 x1=1,x2= -3 3、3x2+x-2=0 x1= -1,x2=
4,3(x-1)-(x+3)=0 2x-6=0 x=3,经检验是圆方程的解。
5、
6、①、Δ=k2+8 ∵k2≥0 ∴k2+8>0.∴方程有两个不相等的实数根。
②、∵x1+x2=k,x1x2= -2 ∴2k>-2 ∴k>-1
7、略 8、∵平行四边形ABCD∴AD=BC,DC∥AB,∴∠DAE=∠BCF,AE=CF.∴ΔDAE≌ΔDAF,∴DE=CF.
9、
10、是等腰梯形……………………………………………………………………………………(1分)
已知:梯形ABCD,AD∥BC且∠B=∠C(或∠A=∠D)………………………………(2分)
求证:梯形ABCD是等腰梯形……………………………………………………………(3分)
证明一:过点A作AE∥DC,交BC于E…………………………(4分)
∵AD∥BC AE∥DC
∴四边形AECD是平行四边形,∴∠AEB=∠C,
AE=DC…………………………………………………(5分)
∵∠B=∠C
∴∠AEB=∠B………………………………………………………………………(6分)
∴AB=AE……………………………………………………………………………(7分)
∴AB=DC
∴梯形ABCD是等腰梯形………………………………………………………(8分)
证明二:过A、D两点分别作AE⊥BC,DF⊥BC垂足为E、F
∵AE⊥BC、DF⊥BC
∴AE∥DF且∠AEB=∠DFC
∵AD∥BC
∴四边形AEFD是平行四边形 ∴AE=DF
∵∠AEB=∠DFC ∠B=∠C
∴△AEB≌△DFC ∴AB=DC
∴梯形ABCD是等腰梯形
证明三:延长BA、CD交于E点
∵∠B=∠C ∴BE=CE
∴AD∥BC ∴∠EAD=∠B,∠EDA=∠C ∴∠EAD=∠EDA
∴AE=DE ∴AB=DC
∴梯形ABCD是等腰梯形
11、 解:由题意知:(1)PB+PC=8,BC=PC-PB=2
∴PB=2,PC=6
∴PB·PC=(m+2)=12
∴m=10
(2)∴PA2=PB·PC=12
∴PA=
12.解:(1)设规定时间为x天,则
解之,得x=28,x=2
经检验可知x=28,x=2都是所列方程的根,但x=2不合题意,舍去,只取x=28
由24<28知,甲、乙两组合做可在规定时间内完成.
(2)设甲、乙两组合做完成这项工程的用去了y天,则
解之,得y=20(天)
甲独做剩下工程所需的时间:(天)
∵20+10=30>28,∴甲独做剩下的工程不能在规定时间内完成;
乙独做剩下工程所需的时间:(天)
∵20+6=26<28,∴乙独做剩下的工程能在规定时间内完成.
∴我认为抽甲组最好.
13、解答
(1)AO=BO,DH=EH,DF=AF,AC=DE……3分(少一个扣1分,扣完3分为止)
(2)证明:连EC,AE,
则∠PFC是ΔECF的一个外角,于是∠PFC=∠ACE+∠FEC
∵DH⊥AB,AB是⊙O的直径,
∴A是DE中点,即AD=AE,
P C
∴∠AED=∠ACE ……4分 D
∴∠ACE+∠FEC=∠AED+∠DEC=∠AEC. F
………………5分
∵PC是⊙O的切线, A H O B
∴∠PCA=∠AEC.
∴∠PCA=∠PFC, E
∴PC=PF.……………6分
∵PC是切线
∴,∴.……7分
(3)在⊙O中,AHHB=DHHE=DH,
∴
设AF=,则.
在中,
∴,∴,即.
于是.……9分
由(1)(2)知,
,解得.∴=.
∴PC=PF=…10分
|