教学内容: 乘法分配律的应用 教学目的: 1.引导学生能运用乘法分配律进行一些简便运算。 2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。 3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。 教学过程: 一、复习准备 出示: 1.口算: 73+27138×100 100-6464×1 8×9×125 (4+40)×25 2.在□里填上适当的数。 302=300+□ (300+2)×43=300×□+2×□ 2003=2000+□ (2000+3)×14=2000×□+□×□ 二、新授 我们已经学习了乘法分配律,今天继续研究怎样应用乘法分配律使计算简便。 出示102×() 学生任意填上一个两位数。 老师迅速说出它的得数,而不用笔算。 出示: 计算102×43 小组讨论完成。 学生可能出现: (1)(100+2)×43 (2)102×(40+3) 在对比的基础上,教师引导学生观察题目的特点,以及怎样应用乘法分配律,从而使学生明确:两个数相乘,把其中一个比较接近整十、整百、整千的数与一个数的和,再应用乘法分配律可以使计算简便。 小练: (1)在□里填上适当的数。 3001×84=□×84+□×84 92×203=92×(200+□) =92×200+92×□ (2)计算102×24 出示:9×37+9×63 学生在练习本上独立完成。 (1)9×37+9×63 =333+567 =900 (2)9×37+9×63 =9×(37+63) =9×100 =900 找出不同的方法,进行板演。 引导学生对比两种方法,重点理解、说明第二种方法。 小结:这类题目的结构形式的特点是算式的运算符号一般是×、+、×的形式,也就是两个积的和。 在两个乘法算式中,有一个相同的因数,也就是两个数的和要乘那个数。 另外两个不同的因数,一般是两个能凑成整十、整百、整千的数。 小练:(80+8)×25 32×(200+3) 35×37+65×37 38×29+38 讨论:这个题目符合乘法分配律的结构形式吗?你能把它转化成乘法分配律的形式吗?怎样应用乘法分配律进行简算? 订正时,说明怎样运用运算定律简算的。 引导学生小结:我们运用乘法分配律间算时,一定要认真审题,观察算式的特点,有的不能直接简算,只要将题型稍加改变,就能进行简算。 三、巩固练习 1.师生对出题。 我们运用刚才学过的知识对出题,你出一个乘法算式,我出一个乘法算式,但这两个算式合起来要能应用乘法分配律简算。 2.根据乘法分配律把相等的算式用“=”连接起来。 23×12+23×88 (35+45)×12 (11×25)×4 25×(4+40) 讨论:2、3题为什么不相等?要使等号两边的算式相等,符合乘法分配律的形式,应该怎么改? 3.P38/5 四、小结 谈收获。 五、作业:P38/6—8 板书设计: 乘法分配律的应用 计算102×439×37+9×639×37+9×6338×29+38 102×43=333+567=9×(37+63)=38×(29+1) =(100+2)×43=900=9×100=38×40 =100×43+2×43=900=1520 =4300+86 =4386
|