三角形的内角和 教学要求: 1.通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。 2.能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。 3.培养学生动手动脑及分析推理能力。 教学重点: 三角形的内角和是180°的规律。 教学难点: 使学生理解三角形的内角和是180°这一规律。 教学用具: 每个学生准备锐角三角形、直角三角形、钝角三角形纸片各一张,量角器。 教学过程: 一、复习准备 1.三角形按角的不同可以分成哪几类? 2.一个平角是多少度?1个平角等于几个直角? 3.已知∠1=35°,∠2=75°,求∠3的度数。 二、教学新课 1.投影出示一组三角形:(锐角三角形、钝角三角形、直角三角形)。 三角形有几个角?老师指出:三角形的这三个角,就叫做三角形的三个内角。(板书:内角) 2.三角形三个内角的度数和叫做三角形的内角和。(板书课题:三角形的内角和)今天我们一起来研究三角形的内角和有什么规律。 3.以小组为单位先画4个不同类型的三角形,利用手中的工具分别计算三角形三个内角的和各是多少度? 4.指名学生汇报各组度量和计算的结果。你有什么发现? 5.大家算出的三角形的内角和都接近180°,那么,三角形的内角和与180°究竟是怎样的关系呢?就让我们一起来动手实验研究,我们一定能弄清这个问题的。 6.刚才我们计算三角形的内角和都是先测量每个角的度数再相加的。在量每个内角度数时只要有一点误差,内角和就有误差了。我们能不能换一种方法,减少度量的次数呢? 提示学生,可以把三个内角拼成一个角,就只需测量一次了。 7.请拿出桌上的直角三角形纸片,想一想,怎样折可以把三个角拼在一起,试一试。 8.三个角拼在一起组成了一个什么角?我们可以得出什么结论?(直角三角形的内角和是180°) 9.拿一个锐角三角形纸片试试看,折的方法一样。再拿钝角三角形折折看,你发现了什么?(直角三角形和钝角三角形的内角和也是180°) 10.那么,我们能不能说所有三角形的内角和都是180°呢?为什么?(能,因为这三种三角形就包括了所有三角形) 11.老师板书结论:三角形的内角和是180°。 12.一个三角形中如果知道了两个内角的度数,你能求出另一个角是多少度吗?怎样求? 14.已知∠1=140°,∠3=25°,求∠2的度数。 指名汇报怎样列式计算的。两种方法均可。 ∠2=180°-140°-25°=15° ∠2=180°-(140°+25°)=15°
|