教学重点;目标1、2。
教学难点:目标2。
教学过程:
教师活动 |
学生活动 |
活动一:复习,巩固圆柱表面积的计算方法。
1、 圆柱的表面积和侧面积有什么关系?
2、 侧面积怎样计算?
3、 表面积怎样计算?
4、 一个圆柱,底面周长94。2厘米,高25厘米,求它的侧面积和表面积。
5、 一个圆柱,半径3。2分米,高5分米。求表面积。
活动二;提高解决问题的能力。
1、 如图,压路机前轮转动一周,压路的面积是多少平方米?
请看着书上的图,说说压路机前面的圆柱,底面在哪?高在哪?
求压路的面积就是求什么?
2、 一个圆柱形水池,水池内壁和底面都要镶上瓷砖,水池底面直径6米,池深1。2米,镶瓷砖的面积是多少平方米?
师:是指侧面积和一个底面积。
3、 制作一个底面直径20厘米,长50厘米的圆柱形通风管,至少要用多少平方厘米铁皮?
通风管有什么特征?
计算通风管需要多少铁皮,就是求圆柱的的什么?
4、 油桐的表面要刷上防锈油漆,每平方米需用防锈油漆0。2千克,漆一个油桐大约需要多少防锈油漆?(结果保留两位油漆)
求需要多少油漆就是求圆柱形油桐的什么?
注意:这种解决实际问题的内容,一般都采用进一法进行保留。
5、 薯片盒规格如图,每平方米的纸最多能做多少个薯片盒的侧面包装?
要解决这个问题,必须先求什么?(先求侧面积)
再求什么?(再求1平方米里面包含了几个侧面积)
|
指名请学生说一说。
说出计算的公式。
自己试计算。
指名请学生说一说。
压路的面积是指侧面积,请试着计算。
仔细读题,想一想,镶瓷砖的面积包括什么?
请根据书上的数据,自己独立计算。
就是求圆柱的侧面积。自己试计算。
理解题意,自己进行计算。
准确理解题目的含义,自己进行计算。
计算时要注意换算单位,除不尽时,应当用四舍法求近似数。
|
圆柱与圆锥教学设计
学生特点分析:
学生已经直观认识了长方体、正方体、圆柱和球,并初步了解了长方形、正方形、圆等平面图形的性质,学习了这些图形的面积计算,学生还认识了长方体(正方体),掌握了长方体(正方体)表面积与体积的含义及其计算方法。在此基础上,本单元进一步学习圆柱和圆锥的知识。本单元主要通过五个活动,引导学生学习面的旋转(圆柱和圆锥的认识)、圆柱的表面积、圆柱的体积、圆锥的体积等内容,并参与实践活动。
教学内容分析:
1.结合具体情境和操作活动,引导学生经历“点动成线”“线动成面”“面动成体”的过程,体会“点、线、面、体”之间的联系教材的第一个活动体现的内容是“由平面图形经过旋转形成几何体”,这不仅是对几何体形成过程的学习,同时体会面和体的关系也是发展空间观念的重要途径,这也是教材将此课题目定为“面的旋转”的原因。教材呈现了几个生活中的具体情境,鼓励学生进行观察,激活学生的生活经验,使学生经历“点动成线”“线动成面”“面动成体”的过程。在结合具体情境感受的基础上,教材又设计了一个操作活动,通过快速旋转小旗,引导学生结合空间想象体会立体图形的形成过程,发展空间观念。教材还提供了若干由面旋转成体的练习。
2.重视操作与思考、想象相结合,发展学生的空间观念操作与思考、想象相结合是学生认识图形、探索图形特征、发展空间观念的重要途径。在本单元中,教材重视学生操作活动的安排,在每个主题活动中都安排了操作活动,促进学生理解数学知识、发展空间观念。如“圆柱的表面积”的教学中,教材引导学生通过操作来说明圆柱的侧面展开后是一个怎样的图形,并呈现了两种操作的方法:一种是把圆柱形纸盒剪开,侧面展开后是一个长方形;另一种是用一张长方形纸卷成圆柱形。再如本单元的最后专门安排了一个“用长方形纸卷圆柱形”的实践活动,先让学生用两张完全一样的长方形纸,一张横着卷成一个圆柱形,另一张竖着卷成一个圆柱形,研究两个圆柱体积的大小;然后组织学生将两张完全一样的长方形纸裁开,把变化形状后的纸再卷成圆柱形,研究圆柱体积的变化,引导学生发现规律,深化对圆柱表面积、体积的认识,并体会变量之间的关系。
单元教学内容:
面的旋转 圆柱的表面积 圆柱的体积 圆锥的体积
单元教学目标:
1、 结合具体情境和操作活动,引导学生整体把握“点、线、面、体”之间的联系。
2、 从多种角度探索圆柱和圆锥的特征。
3、 探索圆柱表面积的计算方法,发展空间观念。
4、 经历圆柱和圆锥体积计算方法的探索过程,体会“类比”的思想。
5、 在解决实际问题中用活所学知识,感受数学与生活的联系。
教学内容:面的旋转
教学目标:
1. 通过初步认识圆柱和圆锥使学生感受到数学与生活的密切联系。
2. 通过观察和动手操作等,初步体会“点、线、面、体”之间的关系,发展空间观念。
3. 通过由面旋转成体的过程,认识圆柱和圆锥,了解圆柱和圆锥的基本特征,知道圆柱和圆锥的各部分名称。
教学重点:
1、联系生活,在生活中辨认圆柱和圆锥体的物体,并能抽象出几何图形的形状来。
2、通过观察,初步了解圆柱和圆锥的组成及其特点。
教学难点:
通过观察,初步了解圆柱和圆锥的组成及其特点。
教学用具:
各种面、圆柱和圆锥模型
教学过程:
一、 创设情境
我们学过那些平面图形?
二、新知探究
活动一
课件显示:将自行车后轮架支起,在后车车条上系上彩带。转动后车轮,观察并思考彩带随着车轮转动后形成的图形是什么?
学生根据发现的现象(彩带随着车轮的转动形成了圆)说明自己的想法,并体验:点动成线
活动二
观察课本主题图,你发现了什么?
学生发现:
风筝的每一个节连起来看,形成了一个长方形;雨刷器扫过后形成一个半圆形(课件显示)
学生体验:线动成面
活动三
观察课本主题图,(课件显示):用纸片和小棒做成下面的小旗,快速的旋状小棒,观察并想象旋转后形成的图形,再连一连。
1、学生实际动手操作,然后根据想象的图形连线
1——1(圆柱) 2——3(球) 3——4(圆锥) 4——2(圆台)
2、介绍:圆柱、圆锥、球的名称。并请学生根据自己的观察介绍一下这几个立体图形的特点。指名请学生说。
小结:我们学过的长方体、正方体都是由平面围成的立体图形,今天我们学习的圆柱、圆锥和球也是立体图形,只是与长方体、正方体不同,围成的图形上可能有曲面。
活动四、找一找
请你找一找我们学过的立体图形
活动五、说一说
圆柱与圆锥有什么特点?和小组的同学互相说一说
圆柱:有两个面是大小相同的圆,有另一个面是曲面。
圆锥:它是由一个圆和一个曲面组成的。
活动六、认一认
圆柱的上下两个面叫做底面,它们是完全相同的两个圆。圆柱有一个曲面,叫做侧面。圆柱两个底面之间的距离叫做高。
圆锥的底面是一个圆。圆锥的侧面是一个曲面。从圆锥顶点到底面圆心的距离是圆锥的高。(画出平面图进行讲解。并在图上标出各部分的名称。)
上一页 [1] [2] [3] [4] 下一页
|