我想教过这一单元的老师对它的感觉肯定是“想说爱你不容易”,学生也一定是“恨你在心口难开”。呵呵~~这一切的源头都得归功于本单元的“计算”。
对于本单元的计算,我曾采取了以下策略,以期学生能少“恨”一些:
1、熟记3.14与一些常用数相乘的结果。
2、启动学生的简算意识,教给学生一些计算的技巧。
①对于一些有特殊数据的计算,如计算圆柱体积:2.5×2.5×3.14×8,引导学生利用乘法结合律使计算简便,(2.5×2.5×8)×3.14=50×3.14=157 ;② 计算圆锥的体积时,可让学生把乘数中能和1/3约分的先约分,然后再乘:如4×4×3.14×6×1/3,可引导学生把6和1/3先约分,然后再乘,(4×4×2)×3.14=100.48 ;③对于一般数据的题目,如:3×3×3.14×8,也尽量把3.14以外的数先相乘,最后再和3.14相乘,即(3×3×8)×3.14=72×3.14=226.08,以提高计算正确率。
3、计算量很大的题目,采取“只列式,不计算”。
对于计算繁杂程度高的题目,我通常是采取“只列式不计算”的策略,既可保持学生的兴趣又可节省时间。
如教材P27E4,“银行的工作人员通常将50枚硬币摞在一起,用纸卷成圆柱形状。(底面直径2.5cm,高9.25cm)你能算出每枚1元硬币的体积大约是多少立方厘米吗?”
这题的列式是1.25×1.25×3.14×9.25÷9,如果真让学生计算出结果的话,恐怕既费时又费力。我想教材编者编写此题的目的,应该是把圆柱与生活接轨、为学生孕伏一种测量小号物体体积的方法,而非真的侧重于结果,所以我们教师也不要拘泥于“算”。
4、启动学生的估算意识。
估算可以使学生把正确结果的范围框定,对于一些有明显错误的计算,容易发现问题。如:1.2×1.2×3.14×6=271.296,估算:1×1×3×6=18,正确的结果应该是在18左右,而现在271.296偏离正确的结果太远了,一定是错误的。正确的结果应该是27.1296。
当然,如果真的为学生的兴趣考虑的话,就应该像教材第21页上所写的那样“今后涉及到圆柱、圆锥的有关计算时,可以使用计算器”。但是由于考试的“紧箍咒”,又有几个老师能够如此洒脱与超然呢?
圆柱与圆锥这一单元是小学阶段立体几何的最后一部分内容,同时也为今后立体几何的学习打下坚实的基础。本节课是圆柱圆锥的启始课,安排在圆柱表面积等课之前,是帮助学生充分理解表面积、体积计算方法重要的一课,所以此节课中的设计应多下功夫,为学生今后的学习打好基础。青岛版教材《圆柱和圆锥的认识》和原教材相比,在编排上有较大的变化。新教材集中认识圆柱和圆锥,而原教材圆柱和圆锥是分别认识的。这样安排有利于将圆柱与圆锥的特征更好的进行对比,通过两种形状的联系加深对两种形状的认识。教案设计过程中本课重点是圆柱和圆锥特征的认识而难点是圆柱与圆锥高的认识,针对重难点我做了如下的教学设计:
1、 注重联系生活实际,加深圆柱和圆锥的认识。
由实物抽象出几何形体:圆柱和圆锥体,引导学生对照模型和图形,在头脑中形成圆柱和圆锥的表象,帮助学生形成空间观念。接着让学生举生活实例,你在周围见过哪些这样的物体?
2、动手实践,探索对圆柱的特征。
认识圆柱时,引导学生通过观察、比较、交流等活动,进一步探索圆柱的特征。在此基础上,结合圆柱的直观图,介绍圆柱的底面、侧面和高的含义。这一过程,学生是在教师的引导下进行学习的,对圆柱的特征有了较完整的认识。通过对两个高度不同的圆柱让学生比较引出圆柱高的概念,学生在理解概念的基础上思考圆柱有几条高。
3、运用迁移的方法学习圆锥的特征。
圆锥的认识和圆柱的认识在研究内容上有其相似之处。认识圆柱后我及时地引导学生进行回顾:圆柱是从面(面的个数、面的特征)、高(什么是高、高的条数)等几个方面进行研究的。引导学生利用圆柱的学习方法去自主学习交流圆锥的特征。对于圆锥,不同的同学有了不同的认识。然后,通过适时地交流和组织,学生对于圆锥有了较好的认识。
4、加强对比、沟通联系。
圆柱和圆锥认识以后,我让学生对于圆柱和圆锥的特征进行了有效的对比。从而使学生对于圆柱和圆锥的面、高有了更深的认识,完善了学生的知识系统。
通过本课的教学,我认识到在今后的教学中要注意教材编排的特点,有层次地发挥教师的主导作用。教学中的“度”确实应该引起我们的重视。
认真拜读了康校的《认识圆柱和圆锥课堂实录》。文中对本人的这节课给予了很高的评价,令我汗颜。文中也提到学生质疑精神的培育问题。依我个人理解,学生问题意识或者说质疑精神的培育取决于四个方面:一是教师平时有意识的指导,不失时机的点拨、鼓励;二是学生已有的认知结构和对教材解读的深度,即充分利用已有知识经验对文本进行深入的解读;三是小组成员间的思维碰撞,在讨论、交流中相互启发,发现问题、提出问题。四是生态课堂评价体系的建立和完善。
另就学生提到的直圆柱问题,我后来特意上网查了,确有这种说法,现摘录如下:
直圆柱
直圆柱图片
直圆柱也叫正圆柱、圆柱,可以看成是以矩形的一边所在直线为轴、其余各边绕轴旋转而成的曲面所围成的几何体。
在这个矩形旋转时,不动的一边为旋转轴,其余各边绕轴旋转所得到的直圆柱也叫矩形旋转体;与轴平行的另外一条边为旋转面的母线,母线旋转所形成的面叫做圆柱面。如果用垂直于轴的两个平面去截圆柱面,那么两个截面和圆柱面所围成的几何体叫做直圆柱,简称圆柱。如果用不垂直于轴的两个平行平面去截圆柱面,那么两个截面和圆柱面所围成的几何体叫做斜圆柱,而不是直圆柱。
圆柱的性质,要强调两点:一是连心线垂直圆柱的底面;二是三个截面的性质——平行于底面的截面是与底面全等的圆;轴截面是一个以上、下底面圆的直径和母线所组成的矩形;平行于轴线的截面是一个以上、下底的圆的弦和母线组成的矩形.
这段文字中虽然提到有斜圆柱,但没看到直观图,有点遗憾。其实这个问题很多老师都在问,南博的网友“如东三火”也曾作过较为深入的研究。很是庆幸自己又学到不少知识,正所谓教学相长也。
|