4、教学例3. (1)出示例3 已知近似于圆锥形的沙堆的底面直径和高,求这堆沙堆的的体积。 (2)要求沙堆的体积需要已知哪些条件?(由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高) (3)题目的条件中不知道圆锥的底面积,应该怎么办?(先算出沙堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出沙堆的体积) (4)分析完后,指定两名学生板演,其余学生将计算步骤写在教科书第26页上.做完后集体订正。(注意学生最后得数的取舍方法是否正确) 四、巩固练习 1、做练习四的第7题。 学生先独立判断这三句话是否正确,然后全般核对评讲。 2、做练习四的第8题。 (1)引导学生学生思考回答以下问题: ① 这道题已知什么?求什么? ② 求圆锥的体积必须知道什么? ③ 求出这堆煤的体积后,应该怎样计算这堆煤的重量? (2)让学生做在练习本上,教师巡视,做完后集体订正。 3、做练习四的第6题。 (1)指名学生先后回答下面问题: ① 圆柱的侧面积等于多少? ② 圆柱的表面积的含义是什么?怎样计算? ③ 圆柱体积的计算公式是什么? ④ 圆锥的体积公式是什么? (2)学生把计算结果填写在教科书第28页的表格中,做完后集体订正。 五、总结 这节课学习了哪些内容?你是如何准确地记住圆锥的体积公式的? 板书: 圆柱的体积=底面积×高 圆锥的体积= ×圆柱的体积= ×底面积×高 字母公式:V= Sh
3、整理和复习
教学内容:P29页第1-3题,完成练习五。 教学目的: 1、复习,使学生比较系统地掌握本单元所学的立体图形知识,认识圆柱、圆锥的特征和它们的体积之间的联系与区别,掌握圆柱表面积、体积,圆锥体积的计算公式,能正确计算。 2、学生的空间观念,培养学生有条理地对所学知识进行整理归纳的能力。 3、学生认真的学习态度。 教学重点:圆柱、圆锥表面积、体积的计算 教学难点:圆柱、圆锥的特征和它们的体积之间的联系与区别 教学过程: 一、复习圆柱 1、圆柱的特征 (1)教师出示画有形状、大小以及摆放位置不同的几个圆柱的幻灯片.指名让学生回答:这些图形叫什么图形?(圆柱)有什么特点?(圆柱是立体图形,圆柱有上、下两个面叫做底面,它们是完全相同的两个圆.两个底面之间的距离叫做高.侧面是一个曲面.) (2)做第29页第1题:指出几个图形中哪些是圆柱。 2、圆柱的侧面积和表面积 (1)出示画有圆柱的表面展开图的投影片.先让学生观察,然后让学生回答:圆柱的侧面是指哪一部分?它是什么形状的?(长方形或正方形)圆柱的侧面积怎样计算?(底面的周长×高)为什么要这样计算?(因为:底面的周长=长方形的长,高=长方形的宽) (2)表面积是由哪几部分组成的?(圆柱的侧面积+两个底面的面积) (3)第29页第2题中求圆柱表面积的部分。 3、圆柱的体积 (1)圆柱的体积怎样计算?(底面积×高)计算公式是怎样推导出来的?(把圆柱切割开,拼成近似的长方体,使圆柱体的体积转化为长方体的体积。根据长方体的体积=底面积×高,推出圆柱体的体积=底面积×高)圆柱体的体积计算的字母公式是什么?(V=Sh) (2)做第29页第2题中关于圆柱体积的部分。 4、学生独立完成第29页第3题。(先思考“用多少布料”求什么?“装多少水”又是求什么?区分清所求的是圆柱的表面积或体积时再计算) 二、复习圆锥 1.圆锥的特征 (1)圆锥有哪几个部分?有什么特点?(是立体图形,有一个顶点,底面是一个圆,侧面是一个曲面。从圆锥的顶点到底面圆心的距离,叫做圆锥的高。) (2)做第91页第1题的下半题和第2题的第(3)小题. 让学生将圆锥的特征自己用简单的词汇填写在表中.教师提醒学生:“举例”一栏要填写自己知道的形状是圆锥的实物. 2.圆锥的体积. (1)怎样计算圆锥的体积?(用底面积×高,再除以3)计算圆锥体积的字母公式是什么?(V= Sh)这个计算公式是怎样得到的?(通过实验得到的,圆锥体的体积等于和它等底等高的圆柱体体积的三分之一) (2)做第29页第2题中有关圆锥体积的部分。 三、课堂练习 1、做练习五的第1题。(学生独立判断,并画出高,小组讨论订正) 2、做练习五的第2题。 (1)学生审题后思考:求用多少彩纸是求圆柱的什么? (2)指名板演,其他学生独立完成于课堂练习本上。 3、做练习五第5题。(可建议学生用方程解答) 四、作业 练习五的第3、4、6题。 上一页 [1] [2] [3] [4]
|