教学 模块 知识与技能——数与代数 5、式与方程 复习目标 本板块是对小学阶段学习的代数初步知识进行整理,包括用字母表示数、简易方程及用方程解决实际问题。 知识要点 【回顾与整理】 例1:用字母表示数,可以简明地表达数量关系、运算律和计算公式。你能举出一些这样的例子吗? (对用字母表示数知识的系统整理。) 教学时,让学生通过举例来回顾如何用字母表示数、数量关系、公式等,并以表格的形式来呈现,同时引导学生对用字母表示的内容进行观察,使之对小学阶段的公式、数量关系、运算律等有系统的了解。对用字母表示数时容易出错的问题,教师要加以强调。如:字母和数相乘、字母和字母相乘时的写法等。 例2:你能把有关方程的知识整理一下吗?(对有关方程知识进行整理。) 教学时,可以先让学生对有关的概念进行回顾,如:等式、方程、方程的解、解方程等进行回顾,并对易混概念:等式与方程、方程的解与解方程进行讨论区分。然后引导学生列表整理,交流完善。 复习解方程时,要使学生弄清解方程中每一步的根据是什么(等式的性质),以及怎样检验。教师可通过举例来引导学生复习。 【讨论与交流】 “讨论与交流”是对用字母表示数的优越性及用方程解决问题的特点进行讨论。 教学时,对于用字母表示数的优越性,要使学生在交流的基础上感受到用字母表示数很简洁、概括、准确。对于第二个问题,可结合具体的题目,让学生分别用方程与算术方法解答,通过对比,分析用方程和算术方法解决问题的基本思路及特点,体会两种思路的区别,知道有些题目适合用方程思路解决,有些题目适合用算术方法解决。明确在用方程解决问题时,关键是要抓住题目中主要的等量关系,设未知数,列方程解答。 【应用与反思】 第2题是一个找规律的题目。练习时,可以让学生边观察边填表,在填写的过程中发现规律,自觉地运用字母表示出规律。规律是:分成的三角形的个数比边数少2,用含有字母的式子就是n-2。体会用字母表示数的概括性。 第4题是用列方程的方法解决问题的题目。练习完成后,教师可以把该题的已知条件和问题变化一下,变成用算术方法解决的问题,让学生体会到灵活选择解答方法的必要性。最后,引导学生总结用不同方法解决问题的特点。 教学 模块 知识与技能——空间与图形 1、图形的认识与测量 复习目标 本板块是把小学数学中学过的平面、立体图形集中整理复习。先复习各种平面、立体图形的概念,掌握各种图形的特征以及各种图形之间的联系,再复习周长、面积、体积计算公式以及它们之间的联系。 知识要点 知识要点 知识要点 【回顾与整理】 例1:怎样整理平面图形和立体图形的有关知识? (对平面图形和立体图形的基本概念、特征和有关的计算公式进行整理。) 教学时,首先让学生回顾小学阶段学过的图形,然后借助教材中的表格进行分类整理。针对整理的结果,引导学生将平面图形从概念、特征、周长、面积计算等方面进行全面回顾。立体图形从名称、特征及表面积、体积计算等方面进行全面回顾。在对平面图形和立体图形进行系统整理的基础上,引导学生进行归类。平面图形中分两类,一类是由线段围成的,一类是由曲线围成的。在出现了线段之后,顺势引出对直线、射线、线段及平面内两直线位置关系等知识的复习,明晰直线、射线、线段的联系与区别。平面内两直线的位置关系可整理成如下形式: 例2:我们学过的平面图形的面积计算公式是怎样推导出来的?它们之间有怎样地联系? ( 通过回顾平面图形面积计算公式的推导,沟通它们之间的联系。) (1)引导学生按学习顺序回顾学过的平面图形面积的顺序及公式推导过程。 (2)分析它们之间的联系。 根据这两个环节,让学生自主进行梳理。从中体会到学习面积公式时按照长方形、正方形、平行四边形、三角形、梯形、圆的顺序安排的道理,发现在学习新图形时都是将未知的图形转化成已知的图形推导面积公式的,它们之间存在着一定的联系。然后学生可以根据自己的喜爱整理成各种练习网络图。 例3:我们学过的立体图形的体积计算公式是怎样推导出来的?它们之间有怎样的联系? (通过回顾立体图形的体积计算公式的推导,沟通它们之间的联系。) 教学时,可以先让学生回顾学过的立体图形的体积公式推导过程,然后再来分析它们之间的联系,明确长方体、正方体、圆柱的体积公式可统一为底面积乘高。 例4:怎样选择下面的材料制作一个水桶?有几种方案?你是怎样想的? (借助于解决实际问题(制作水桶),学习确定解决问题策略和方法。) 教学时,让学生独立地经历从“问题——想像——选择——计算——问题解决”的过程。再交流不同的方案及各自的思考过程,师生共同整理解决该问题的思考流程图,体会解决此类问题的一般方法,即从“立体——平面——立体”的知识运用过程。该题可以有以下方案:可以分别以62.8厘米和31.4厘米为底面周长制作成两个不同的圆柱体形状水桶;也可以分别以62.8厘米和31.4厘米为底面正方形周长制作成两个不同的长方体形状水桶。 【讨论与交流】 “讨论与交流”部分是借助于问题的讨论让学生体会渗透在研究过程中的数学思想和方法。 教学时,对第一个问题的讨论让学生明确,平面图形一般是从边和角两方面进行研究的,立体图形是从面、棱、顶点三个方面研究的。对第二个问题的讨论,可结合具体的实例(如平行四边形转化成长方形),让学生进一步体会转化思想方法的应用,并进而推广到其它平面图形及立体图形计算公式的推导过程。 【应用与反思】 第1题是一个操作性的游戏活动,是对图形认识及位置确定的综合应用。通过描述积木的形状与大小,说清每个积木的位置,操作者进行摆放。一方面描述者要描述清楚,另一方面操作者要根据描述找到积木并确立好位置。练习时,应引导学生通过想象进行思考:(1)怎样准确描述?(2)怎样根据描述找到需要的积木,并确定它的位置?在思考及实际的操作中明确,描述时不仅要描述形状还要明确大小,进而描述位置。操作者需要根据描述想象符合要求的图形,找到相应的积木,再按照描述的位置进行摆放。 第4题是一道利用画图复习平行及垂直知识的题目。练习时,应让学生明确,与A管道相连最省料就是过A点做a管道的垂直线段。题目完成后,利用图形对平行、垂直知识进行整理 教学 模块 知识与技能——空间与图形 2、图形的位置与变换 复习目标 本板块是对图形的位置与变换进行系统的整理,复习的主要内容包括对称、平移、旋转,根据方向和距离确定物体的位置、描述简单的线路图、用数对确定物体的位置,设计图案等。 知识要点 【回顾与整理】
上一页 [1] [2] [3] [4] 下一页
|