教学要求: 1.进一步理解和掌握三角形面积的计算公式,能运用公式解答有关的实际问题,提高学生运用知识解决问题的能力。 2.养成良好的审题、检验的习惯,提供正确率。 教学重点:运用所学知识,正确解答有关三角形面积的应用题。 教学难点:利用三角形面积的计算公式解决生活中的相关问题,提高学生运用知识分析和解决实际问题的能力。 教学过程: 一、基本练习 1.上节课我们学习了三角形的面积的计算公式,谁能说说这个计算公式是怎样的?如何用字母表示?为什么公式中有一个“÷2”? 2.一个三角形与一个平行四边形等底等高,平行四边形的底是2.8米,高是1.5米。三角形的面积是( )平方米,平行四边形的面积是()平方米。 2、练习十六2题 二、指导练习 1、练习十六第6题:下图中哪两个三角形的面积相等?(两条虚线互相平行。)你还能画出和它们面积相等的三角形吗? ⑴生用尺量一量这两条虚线间的距离,搞清这两条虚线是什么关系? ⑵看看图中哪两个三角形的面积相等?为什么? 师小结:等底(同底)等高的三角形面积相等。 ⑶分组讨论如何在图中画出一个与它们面积相等的三角形,并试着画出来 2、练习十六第7题 我们知道等底等高的三角形面积相等,如果要把一个三角形分成4个面积相等的三角形,可以怎样分呢? 让学生尝试分。 展示学生的作业 可能有: a、根据等底等高的三角形面积相等这一结论,只要把原三角形分成4个等底等高的小三角形,它们的面积就必然相等。而要找这4个等底等高的小三角形,只需把原三角形的某一边4等份,再将各分点与这边相对的顶点连接起来即可。 b、也可把原三角形先二等分,再把每一份分别二等分。 未命名.JPG(4.14KB) 2007-11-2922:59未命名1.JPG(2.75KB) 2007-11-2922:59 3、练习十六9* 观察并分析平行四边形的面积和其中几个三角形面积之间有怎样的关系? 师:平行四边形的对角线把平行四边形分成两个相等的三角形,每个三角形的面积是平行四边形面积的一半。A点是其中一个三角形底边上的中点,根据等底等高的三角形面积相等,涂色三角形的面积是这个三角形面积的一半,也就是平行四边形面积的1/4。 学生尝试计算,集体订正。 4、练习十六第3题:已知一个三角形的面积和底,如何求高呢? 让学生列方程解和算术方法解,算术方法176×2÷22,要让学生明确176×2是把三角形的面积转化成了平行四边形的面积。 5、练习十六第8*题。 (1)说一说已知什么?要求什么? (2)已知三角形的面积和高,可以求出什么? (3)如何求平行四边形的周长? 学生尝试解决后集体交流。 四、作业:练习十六第4、5题。 教学反思: 校内“同课异构”时,同年组其他两位教师都是将练习十六第6题放在第一课时完成。他们用小黑板直接出示用不同彩笔勾画的同底等高三角形,并分别注明为S1、S2,请学生判断两个三角形的面积。学生有“等底等高的平行四边形面积相等”作基础,不仅很快作出判断,而且准确地分析了原因,教学可谓“一帆风顺”。 我班由于时间关系,将此题留到了练习课中完成。由于我的呈现方式与其他两位教师不同,所以留给了学生更大的思考空间。又由于我喜欢关注学困生,所以指名回答的同学都是学习能力相对比较薄弱的学生。课堂上出现了我未曾预料到的结果。 生1:指图1阴影部分所指的两个三角形面积相等; 平行四边形8.JPG(6.38KB) 2007-12-600:19 (我心里一惊一喜。惊的是学生有这么敏锐地观察能力,仅凭直观就能发现这两个三角形面积相等;喜的是这个发现很有数学的研究价值,值得深挖。) 师:XXX同学认为这两个三角形面积相等,还有其它不同想法的吗? 生2:指图2阴影部分所指的两个三角形面积相等; 平行四边形9.JPG(6.38KB) 2007-12-600:19 (我心里是一凉一忧。凉的是这么显而易见的面积大小,学生居然无法正确判断;忧的是学生的空间观念太差,观察能力也还有待进一步地提高。) 万般无奈下,我只好请优生“出马”,他果然不负众望,指出了我所需要的结果。 当我引导学生根据这个结果顺利发现同底(等底)等高的三角形面积相等并在书上画出了与它们面积相等的三角形后,我立即杀出一记“回马枪”,又回到第一位学生所指的两个三角形面积是否相等的探索上来。因为有刚才的发现作基础,又有同学们的群策群力,生1在这一过程中实现了由直觉感受到真正理解质的飞跃。全班同学也明白了两个面积相等的三角形送去同样大小的三角形后所剩面积相等。班上甚至也人指出这应用了等式的性质,是等号两边同时减去相同的数,等式保持不变。 当我再次引导学生去分析生2的发现是否正确时,学生们从多种渠道、应用多种方法使他明白了面积不等的原因。还有人更深刻地分析出只有长方形(或正方形),这两个三角形的面积才相等。 【分析】 这是一次没有预设到的“错误”,这是一份没有预约的精彩。这份精彩源自于学生的错误,而这份精彩最终体现在学生思维的深化。通过这节课,让我体会到以下两点: 1、“错误”有时是宝贵的资源。 生1的发现不仅正确,而且极具数学研究价值,它丰富了教材练习的内涵,增加了练习的质量。生2的发现是生1的负迁移,可他促使学生更灵活地借助“等底等高的三角形面积相等”来思考问题。如有的学生答到“上面的小三角形是上底乘高除以2,再减去左边三角形的面积。下面的三角形是下底乘高除以2,再减去左边三角形的面积。由于它们的高相等,减去的三角形是同一个三角形,又因为上底比下底短,所以上面的三角形比下面的三角形面积小。”多么精彩的发言呀!在这一教学过程中让我感受到正确的可能只是模仿;错误的却可能是创新。同时在这一过程中我还深深体会到学生的错误不再是教学的“绊脚石”,而是探究活动的“生长点”。学生犯错的过程也是他们的一种尝试和创新的过程。 2、“错误”需要有心人挖掘。 平时教学中遇到学生错误时,我常常问“还有没有不同想法”而将他们的错误一笔带过。即使有心关注,也只是分析完正确答案后反馈一下“你听懂了吗”。这些资源就这么从我的手中悄悄地溜走了。若非今天生1的想法正好是常见考试题中精典内容,让我眼睛突然一亮,我想错误可能会再次与我擦肩而过。留住了这次的意外与精彩,我想在今后的教学中可得做一个有心人。对于学生的思维成果,我必须努力做到快速、灵活、高效地进行分析,判断其错误信息的价值,“挽留”住有价值的结果,并将其视为一种教育资源。从学生的错误中寻找教育契机,化腐朽为神奇,为开展教学活动,解决教学问题服务。
|