群英荟萃揭示元素周期律
从德贝莱纳到纽兰兹
也许人类天生就有将凌乱的知识材料整理、组织、系统化的渴求。元素周期律的发现史充分展现了人们追求真理时不倦的探索精神和坚韧不拔的毅力。
十九世纪初,戴维用电解法和热还原法制得了钾、钠、镁、钙、锶、钡、硼和硅,并证明了那种黄绿色的气体是元素氯而不是所谓的“氧化盐酸”。戴维使元素的种类增加了九种。在这前后,法拉第的好友、曾与戴维竞选英国皇家学会主席的武拉斯顿制得了铑和钯;贝采里乌斯发现了铈、硒和钍;库特瓦用浓硫酸处理海藻灰母液,制得了单质碘;本生的老师斯特罗迈耶用烟怠还原氧化镉制得金属镉;首先合成并研究尿素的维勒用金属钾还原无水氯化铝,制得了纯净的金属铝;溴是用氯气氧化制得的。十九世纪上半叶,由于化学分析方法的丰富,人们还发现了钽、锇、铱、锂、钒、镧、铌、钌、铽、铒。及至本生和基尔霍夫创造光谱分析法,在1860年到1863年的四年间人们发现铯、铷、铊、铟四种元素,掀起了元素发现的又一个高潮。到此,人们已经发现了63种元素。
在对物质、元素的广泛研究中,关于各种元素的性质的资料,积累日愈丰富,但是这些资料却是繁杂纷乱的,人们很难从中获得清晰的认识。整理这些资料,概括这些感性知识,从中摸索总结出规律,成为当时化学家面前一个急待解决的课题道尔顿提出科学原子论之后,许多化学家都把测定各种元素的原子量当作一项重要工作,并逐渐明确了原子价(化合价)的概念。这样就使元素原子量与性质(包括化合价)之间存在的联系逐渐展露出来。早在1829年,德国化学家德贝莱纳就提出了“三元素组”观点。他把当时已知的54种元素中的15种,分成5组,指出每组的三种元素性质相似,而且中间元素的原子量等于较轻和较重的两个元素原子量之和的一半。例如钙、锶、钡,性质相似,锶的原子量大约是钙和钡的原子量之和的一半。氯、溴、碘以及锂、钠、钾等元素也有类似的关系。然而这样的关系即使是当时的54种元素也不能普遍适用,所以没有引起化学家们的重视。
1862年,法国矿物学家尚古多提出一个“螺旋图”的分类方法。他将已知的62种元素按原子量的大小顺序标记在绕着圆柱体上升的螺旋线上,这样某些性质相近的元素恰好出现在同一母线上。因此他第一个指出了元素性质的周期性变化。但是他没有区分主族和副族,一些性质迥异的元素,如硫和钛、钾和锰都跑到同一条母线上了。
两年内尚古多先后把有关的三篇论文、图表、模型送交巴黎科学院,都遭到了拒绝。直到元素周期律已被普遍接受的1889年,他的报告才得到出版。
1865年,英国工业化学家纽兰兹提出了“八音律”。他把当时已知的元素按原子量递增顺序排列成表:
H |
1 |
F |
8 |
Cl |
15 |
Co,Ni |
22 |
Br |
29 |
Pd< |
36 |
I |
42 |
Pt,Ir |
50 |
Li |
2 |
Na |
9 |
K |
16 |
Cu |
23 |
Rb |
30 |
Ag |
37 |
Cs |
44 |
Os |
51 |
G |
3 |
Mg |
10 |
Ca |
17 |
Zn |
24 |
Sr |
31 |
Cd |
38 |
Ba,V |
45 |
Hg |
52 |
Bo |
4 |
Al |
11 |
Cr |
19 |
Y |
25 |
Ce,La |
33 |
U |
40 |
Ta |
46 |
Tl |
53 |
C |
5 |
Si |
12 |
Ti |
18 |
In |
26 |
Zr |
32 |
Sn |
39 |
W |
47 |
Pb |
54 |
N |
6 |
P |
13 |
Mn |
20 |
As |
27 |
Di,Mo |
34 |
Sb |
41 |
Nb |
48 |
Bi |
55 |
O |
7 |
S |
14 |
Fe |
21 |
Se |
28 |
Ro,Ru |
35 |
Te |
43 |
Au |
49 |
Th |
56 |
发现元素的性质有周期性的重复,第八个元素与第一个元素性质相近,就好象音乐中八音度的第八个音符有相似的重复一样。纽兰兹这个表的前两个纵列相应于现代周期表的第二、三周期,但从第三纵列以后就不能令人满意了,有六个位置同时安置了两种元素,还有些顺序考虑到元素的性质而大胆地颠倒了,但并不恰当。纽兰兹没有充分估计到原子量值会有错误,更没有考虑到那些未被发现的元素应该预先留出空位。他只是机械地将元素按原子量大小的顺序连续地排列起来。结果锰和氮、磷、砷排成了性质相似的一排;钴和镍在氯、溴之间,也属于了卤素!——也只好由它们这样。这样做把事物内在的本质规律掩盖起来了。
当时纽兰兹的同行、英国化学家们普遍把八音律斥之为幼稚的滑稽戏,佛斯特教授甚至挖苦说:“为什么不按元素的字母顺序排列呢?那样,也许会得到更加意想不到的美妙效果。” 纽兰兹因而对理论问题的研究感到失望,转而研究制糖工艺。
从“三元素组”到“八音律”(期间包括多位化学家的探索)都从不同的角度,逐步深入地探讨了各元素间的某些联系,使人们一步步逼近了科学的真理。然而探索者的脚步却是歪歪斜斜、迂回曲折的,甚至成为冷眼旁观者的笑料。
在这些探索者中,迈耶尔第一个区分了主族和副族元素。迈耶尔著述《近代化学理论》
尤利乌斯·洛塔尔·迈耶尔1830年8月19日出生于德国一位医生的家庭,从小就受医疗知识和医疗手段的熏陶。1854年他获得维尔兹堡大学医学博士学位。毕业后的迈耶尔发现自己对科学研究的兴趣比开业当医生要强烈得多。在他的导师、生理学教授卢德维希的鼓励下,迈耶尔转向研究生理化学,后来又在海德尔堡大学化学教授本生的指导下进行研究。本生对气体的研究启发迈耶尔于1856年完成了研究论文《血液中的气体》。文中指出,氧气在肺部被血液吸收的量与压力无关,这不是简单的溶解,而是因为氧与血液之间存在着较为松弛的化学结合力。同时,一氧化碳与血液之间存在着较强的化学结合力,所以一氧化碳能够排挤掉已经与血液结合的氧。
1859年迈耶尔担任布雷斯劳大学讲师期间,首先接受了严格的史学研究的训练,他重点研究了十九世纪上半叶的化学发展史,写成了《贝托雷和贝采里乌斯的化学理论》。这项研究使他对当时各种化学思想的交锋有了比较和鉴别。
1860年迈耶尔出席了卡尔斯鲁厄国际化学会议。在这第一次国际化学界的盛会上,30岁的迈耶尔听到了意大利化学家康尼查罗关于利用阿佛加德罗定律和原子热容定律测定原子量、分子量的论文,后来他又认真研究了康尼查罗散发的这篇论文,感到疑云顿消,接受了阿佛加德罗的分子论,并且认为这次会议将成为化学理论发展的一个转折点。这些认识促使他系统总结当时的化学理论,于四年后的1864年写成了著名的《近代化学理论》,宣扬了科学原子—分子论。这本书前后再版了五次,并被译成英文、法文和俄文。许多人正是通过这本名著,认识了分子论。
《近代化学理论》(第一版)的另一大贡献是发表了迈耶尔的第一张元素周期表。表中列出了28种元素,它们按原子量递增的顺序排列,周期性地分成6个族,这6族元素相应的化合价是4,3,2,1,1,2。化合价明显地呈现出周期性的变化,同族元素也明显地呈现出相似性。迈耶尔还计算了同族元素的原子量之间的差值,发现第二横排元素的原子量与第三横排相应元素原子量的差值几乎都是16,其他横排之间也有类似的规律。他对此很感兴趣。他还指出硅与锡之间有未发现的元素存在,它的原子量可能是73.1。
四年后,在《近代化学理论》第二版中,迈耶尔发表了他的第二张元素周期表,新增加了24种元素和9个纵行,共计15个纵行,明显地把主族和副族元素分开了,这样就使过渡元素的特性区别于主族而独立地表现出来了,同时也避免了由于副族元素的加入而使同一主族元素的性质迥异。
1870年迈耶尔又发表了他的第三张元素周期表(见下图),重新把硼和铟列在表中,并把铟的原子量修订为113.4。预留了一些空位给有待发现的元素,但是表中没有氢元素。同时发表的还有著名的《原子体积周期性图解》,图中描绘了固体元素的原子体积随着原子量递增而发生的周期性变化。一些易熔的元素(如Li、Na、K、Rb、Cs)都位于曲线的峰顶;而难熔的元素(如C、Al、Co、Pd、Ce)则位于曲线的谷底。迈耶尔吸取前人的研究成果,主要从化合价和物理性质方面入手独立地发现了元素周期律。
1895年4月11日,正在担任蒂宾根大学校长的迈耶尔去世。讣文高度评价他的名著《近代化学理论》:“在开始出版这本书时,并不感到她特别出色,但是随着岁月的增长,这本书对于化学家们产生愈来愈大的影响。这本书从小册子终于发展成为堂堂巨著。在物理化学这门学科建立以前,这本书一直被认为是化学基础理论的代表作。”
门捷列夫提出元素周期律
与迈耶尔相似,以先行者提供的借鉴为基础,门捷列夫通过自己顽强的努力,于1869年2月编成了他的第一张元素周期表。1869年3月18日,俄国化学会举行学术报告会,门捷列夫因病未能出席,他委托他的同事、彼得堡大学化学教授门许特金代他宣读他的论文《元素性质和原子量的关系》。在论文中,他指出:
(1)按照原子量大小排列起来的元素,在性质上呈现明显的周期性变化。
(2)化学性质相似的元素,或者是原子量相近(如Pt,Ir,Os),或者是依次递增相同的数量(如K,Rb,Cs)。
(3)各族元素的原子价(化合价)一致。
(4)分布在自然界的元素都具有数值不大的原子量值,具有这样的原子量值的一切元素都表现出特有的性质,因此可以称它们是典型的元素。
(5)原子量的大小决定元素的特征。
(6)应该预料到许多未知元素将被发现,例如排在铝和硅后面的、性质类似铝和硅的、原子量位于65~75之间的两种元素。
(7)当我们知道了某些元素的同类元素的原子量后,有时可借此修正该元素的原子量。
(8)一些类似的元素能根据其原子量的大小被发现出来。
正如门捷列夫所指出的,周期律的全部规律性都表述在这些原理中。其中最主要的是元素的物理和化学性质随着原子量的递增而做着周期性的变化。
他的卓见没有立即被接受。他的老师、俄国化学家齐宁甚至训诫他是不务正业。在这种压力下,门捷列夫没有象纽兰兹那样伤心地放弃对新理论的研究,他不顾名家的指责和嘲笑,继续为周期律的揭示而奋斗。经过两年的努力,1871年他发表了关于周期律的新论文。文中他果断地修正了前一个元素周期表。例如在前一表中,性质类似的各族是横排,周期是竖排;而在新表中,族是竖排,周期是横排,这样各族元素化学性质的周期性变化就更为清晰。同时他象迈耶尔那样,将那些当时性质尚不够明确的元素集中在表格的右边,形成了各族元素的副族。在前表中为尚未发现的元素留下的4个空格,在新表中则变成了6个。
门捷列夫深信他所发现的周期律是正确的。他以周期律为依据,大胆指出某些元素的原子量是不准确的,应重新测定。例如当时公认金的原子量为169.2,按此,在周期表中,金应排在锇、铱、铂(当时认为它们的原子量分别是198.6,196.7,196.7)的前面。而门捷列夫根据金的性质认为金在周期表中应排在这些元素的后面,所以它们的原子量应重新测定。重新测定的结果是:锇为190.9,铱为193.1,铂为195.2,金为197.2。实验证明了门捷列夫的意见是对的。又例如,当时铀公认的原子量是116,是三价元素。门捷列夫则根据铀的氧化物与铬、钼、钨的氧化物性质相似,认为它们应属于一族,因此铀应为六价,原子量约为240。经测定,铀的原子量为238.07,再次证明门捷列夫的判断正确。基于同样的道理,门捷列夫还修正了铟、镧、钇、铒、铈、钍的原子量。
门捷列夫对于各种元素的单质和化合物的化学性质十分了解,并清楚多种原子量的测定方法,这些知识使他对周期律怀有坚定的信念。而他在周期表中留下空位,并详细预言尚未发现元素的种种性质,则是他在揭示元素周期律的道路上迈出的最出色、最具胆略的一步。
预言的元素被发现
1875年,法国化学家布瓦博德朗在分析比里牛斯山的闪锌矿时发现一种新元素,他将新元素命名为镓,以表达他对他的祖国法兰西的热爱,并把测得的关于镓的主要性质公布了。不久他收到了门捷列夫的来信,门捷列夫在信中指出:关于镓的比重不应该是4.7,而是5.9-6.0。当时布瓦博德朗很疑惑,他是唯一手里掌握金属镓的人,门捷列夫是怎样知道镓的比重的呢?1876年9月,布瓦博德朗重作了实验,将金属镓提纯,重新测定,结果镓的比重确实为5.94(现代值为5.91),这结果使他大为惊奇。他认真地阅读了门捷列夫的周期律论文后,感慨地说:“我没有什么可说的了,事实证明了门捷列夫这一理论的巨大意义。”
下表是个最有力的说明。
类铝(1871年门捷列夫的预言) |
镓(1875年布瓦博德朗发现镓后测定) |
原子量约为68
比重约为5.9-6.0
熔点应很低
不受空气的侵蚀
将在酸液和碱液中逐渐溶解
其氢氧化物必能溶于酸和碱中
能生成类似明矾的矾类
可用分光镜发现其存在 |
原子量为69.72
比重等于5.94
熔点为30.15
灼热时略起氧化
在各种酸液和碱液中逐渐溶解
氢氧化物为两性,能溶于强酸和强碱中
能生成结晶较好的镓矾
镓是用光谱分析法发现的 |
镓的发现是化学史上第一个事先预言的新元素被发现,它雄辩地证明了门捷列夫元素周期律的科学性。1880年瑞典的尼尔森发现了钪,1885年德国的文克勒发现了锗。这两种新元素与门捷列夫预言的类硼、类硅也完全吻合,门捷列夫的元素周期律再次经受了实践的检验。
预言被证明极大地鼓舞了门捷列夫。1889年,门捷列夫应邀参加伦敦化学会举办的法拉第演讲会,他在关于周期表的报告中说道:“我预见到某些新元素的存在,在这里我提供一个例子,虽然至今我对它了解得还不太透彻。包括汞、铅、铋在内的第六周期元素中,我设想有一个与碲相类似、应排在碲下面的元素存在,可以把它叫做‘类碲’。” 果然,‘类碲’又在1898年被居里夫人发现,她为了纪念她的祖国波兰,把这种世界上首次通过追踪放射性而发现的元素命名为钋。钋的性质与门捷列夫预言的‘类碲’的性质也是一致的。
化学元素周期律是自然界的一条客观规律。它揭示了物质世界的一个秘密,即这些似乎互不相关的元素间存在相互依存的关系,它们组成了一个完整的自然体系。从此新元素的寻找,新物质、新材料的探索有了一条可遵循的规律。元素周期律作为描述元素及其性质的基本理论有力地促进了现代化学和物理学的发展。
门捷列夫为元素周期律的揭示做出了卓越的贡献。他的出色之处是敢于对当时公认的原子量提出质疑,并大胆地给未发现元素预留空位,还准确地预言了这些元素的性质。对此他自己曾评价到:
“定律的确证只能借助于由定律引申出来的推论。这种推论,如果没有这一定律便不能得到和不能想到,其次才是用实验来检验这些推论。因此我在发现了周期律之后,就多方面引出如此合乎逻辑的推论,这些推论就能证明这一定律是否正确,其中包括未知元素的特征和修改许多元素的原子量。没有这种方法就不能确证自然界的定律。不论法国人所推崇为周期律发现人的尚古多也好,英国人所推崇的纽兰兹也好,另一些人认为的周期律创始人迈耶尔也好,都没有象我从最初(1869年)起就做的那样,敢于预测未知元素的特性,改变‘公认的原子量’,或一般说来,把周期律认做是一个自然界中结构严密的新定律,它能够把散乱的材料归纳起来。”
从这段话可以看出,门捷列夫当时就将各元素的性质、周期律、推论和实验验证看成一体,他自觉或不自觉地具有普遍联系的辩证思想。他提出周期律运用的是综合归纳的方法,而他验证周期律用的却是演绎推理的方法。
1882年,门捷列夫与迈耶尔共同作为元素周期律的发现人获得了英国皇家学会的最高荣誉——戴维奖章。五年后,英国皇家学会将同样的荣誉颁发给它自己的会员——纽兰兹,以表彰他的“八音律”对周期律的揭示所起的承前启后的作用。
门捷列夫小传
继十六位哥哥、姐姐之后,门捷列夫于1834年2月8日出生于俄国西伯利亚的托波尔斯克市。他父亲是位中学校长。在他出生后不久,父亲双眼因患白内障而失明,一家的生活全仗着他母亲经营一个小玻璃厂而维持着。1847年双目失明的父亲又患肺结核而死去。意志坚强的母亲不管生活多么困难,坚持让孩子们接受了学校教育。
1825年12月,俄国十二月党人发动反对沙皇的武装起义。新登基的沙皇尼古拉一世镇压起义后,将许多革命者流放到西伯利亚。一位爱好自然科学的被流放者和门捷列夫的姐姐结了婚。这使儿童时期的门捷列夫就接触了自然科学知识。
门捷列夫读小学时,对数学、物理、历史课程感兴趣,对语文、尤其是拉丁语很讨厌,因而成绩不好。他特别喜爱大自然,曾同他的中学老师一起作长途旅行,搜集了不少岩石、花卉和昆虫标本。他善于在实践中学习,中学的学习成绩有了明显的提高。
中学毕业后,他母亲决心要让这最小的儿子象他父亲那样接受高等教育。于是她变卖了工厂,经过2千多公里艰辛的马车旅行来到了彼得堡。因为门捷列夫不是出身于豪门贵族,又来自边远的西伯利亚,彼得堡的一些大学拒绝他入学。好不容易,门捷列夫考上了医学外科学校,然而当他第一次观看到尸体时,就晕了过去。他只好改变志愿,通过父亲的同学的帮忙,进入了亡父的母校——彼得堡高等师范学校物理数学系。 母亲看到门捷列夫终于实现了上大学的愿望,不久便带着对他的祝福与世长辞了。举目无亲又无财产的门捷列夫把学校当作了自己的家,为了不辜负母亲的期望,他发奋地学习。那时的师范学院里有一些学识渊博的教授,化学家伏斯克列辛斯基的教学和研究工作尤其鼓舞了这位年轻的大学生。门捷列夫的天才在这里获得了迅速和多方面的发展。 1855年以优异的成绩从学校毕业后,他先后到过辛菲罗波尔、敖德萨担任中学教师。在教师的岗位上他并没有放松自己的学习和研究。1856年他又以突出的成绩通过化学学位的答辩。他刻苦学习的态度、钻研的毅力以及渊博的知识得到老师们的赞赏,彼得堡大学破格地任命他为化学讲师,当时他年仅22岁。
在彼得堡大学,门捷列夫任教的头两门课程是理论化学和有机化学。当时流行的教科书几乎都是大量关于元素和物质的零散资料的杂乱堆积。怎样组织才能讲好课?门捷列夫下决心考察和整理这些资料。
1859年他获准去德国海德尔堡本生实验室进行深造。两年中他集中精力研究了物理化学。他运用物理学的方法来观察化学过程,又根据物质的某些物理性质来研究它的化学结构,这就使他探索元素间内在联系的基础更宽阔和坚实。因为他恰好在德国,所以有幸和俄国化学家一起参加了在德国卡尔斯鲁厄举行的第一届国际化学会议。会上各国化学家的发言给了门捷列夫以启迪,特别是康尼查罗的发言和小册子。门捷列夫是这样说的:“我的周期律的决定性时刻是在1860年,我参加卡尔斯鲁厄代表大会。在会上我聆听了意大利化学家康尼查罗的演讲,正是他发现的原子量给我的工作以必要的参考材料,……而正是当时,一种元素的性质随原子量递增而呈现周期性变化的基本思想冲击了我。”从此他有了一个目标,并为此付出了艰巨的劳动。从1862年起他对283种物质逐个进行分析测定,这使他对许多物质和元素的性质有了更直观的认识。他重新测定一些元素的原子量,因而对元素的这一基本特征有了深刻的了解。他对前人关于元素间规律性的探索工作进行了细致的分析。
1867年,担任了彼得堡大学化学系主任的门捷列夫着手编写一本化学基础知识教科书——《化学原理》。物质种类繁多,怎么分类呢?他先后研究了根据元素对氧和氢的化合关系所作的分类;研究了根据元素电化序所作的分类;研究了根据化合价所进行的分类,特别研究了根据元素的综合性质所进行的元素分类。
他坚信元素原子量是元素的基本特征,同时发现性质相似的元素,它们的原子量并不相近。相反,一些性质不同的元素,它们的原子量反而相差较小。他紧紧抓住原子量与元素性质之间的关系作为突破口,反复测试,不断思索。他在每张卡片上写出一种元素的名称、原子量、化合价、化合物的化学式和主要的性质。就象玩一副别具一格的元素纸牌一样,他反复排列这些卡片,终于发现每一行元素的性质,尤其是元素的化合价,都在按原子量的增大而逐渐变化,周而复始,也就是说元素的性质随原子量的增加而呈周期性的变化。第一张元素周期表就这样产生了。
随着周期律广泛被承认,门捷列夫成为闻名于世的卓越化学家。各国的科学院、学会、大学纷纷授予他荣誉称号、名誉学位以及金质奖章。具有讽刺意义的是,在封建王朝的俄国,科学院推选院士时,竟以门捷列夫性格高傲有棱角为借口,把他排斥在外。后来因门捷列夫不断地被选为外国的名誉会员,彼得堡科学院才被迫推选他为院士,由于气恼,门捷列夫拒绝加入科学院,从而出现俄国最伟大的化学家反倒不是俄国科学院成员的怪事。
这位伟大的科学家不重视个人的荣誉,从不佩带那些奖章。但他却忘不了他深深敬爱的母亲。他曾在一部有关溶液的著作的前言中写下了这样一段话:
“这部著作是一个小儿子献给母亲的纪念品。
为了使这个儿子能得到很好的科学教育,她曾经耗尽了最后的精力。临终时,她还说,‘不要幻想,要坚持工作,耐心地寻求科学的真理吧。’——我将永远记着母亲临终的遗言。”
门捷列夫除了发现元素周期律外,还研究过气体定律、溶液化学理论、气象学、石油工业、农业化学、无烟火药、度量衡,在这些领域他都能辛勤劳动、大胆探索。1887年发生日食的时候,为了观察天象的变化,他不顾家人和朋友的劝阻,一个人乘着气球上升到空中。这个气球被风刮到很远的地方才降落下来,许多人替他捏了一把汗。他这种为科学不顾生命危险的精神鼓舞了许多俄罗斯青年。
他还热爱文学艺术,每晚阅读文艺作品。他的夫人波波娃善于绘画,他们家里挂了许多著名科学家的画像,都出于他夫人的手笔。他们的家庭生活是美满的,一共有六个儿女。
象任何伟人一样,门捷列夫也不可能不犯错误。1903年快七十岁的时候,他又预言了Newtonium和Coronium两种元素。他说:“当我在1869年设计元素周期表的时候,曾经设想存在着比氢还要轻的元素,但当时没有来得及认真思考,现在要发展这一思想。”他预言Newtonium位于氢的上方,原子量约为0.170;而Coronium则应该是能在日晷中找到的新元素,它的原子量约为0.4。他产生这种想法可能是受了两方面的影响:第一,这时周期表中出现了新的一族稀有气体元素,于是他想预言“超轻稀有气体元素”的存在;第二,当时“以太”(ether)理论风行,认为“以太”可能是另一种稀有气体元素,它非常轻、运动速度非常快。
另外,周期表中Co和Ni、Te和I的位置与它们原子量大小顺序的矛盾令门捷列夫不解,他一直怀疑是原子量测定有错误。这些问题只有在莫斯莱提出原子序数的概念,人们认识了原子核内部的结构之后,才能得到解决。
热爱真理的科学家,常常同时热爱正义和民主。1890年,彼得堡大学当局秉承反动沙皇的旨意,加紧压迫校内的民主运动,门捷列夫和其他正直的教授向学校当局提出了抗议,眼见抗议无效他愤而辞职。五年后,为了敷衍社会的公愤和舆论的谴责,沙皇政府才不得不请门捷列夫担任国家度量衡局的局长。他通过度量衡标准的鉴定和检查,把自己的科学知识贡献给俄罗斯的工业生产。他在度量衡局一直工作到他光辉生命的最后一天。
1907年2月2日,这位享有世界盛誉的俄国化学家因心肌梗塞与世长辞,那一天距离他的73岁生日只有六天。
他的名著、伴随着元素周期律而诞生的《化学原理》,在十九世纪后期和二十世纪初,被国际化学界公认为标准著作,前后共出了八版,影响了一代又一代的化学家。
思考与练习
1. 按照门捷列夫的周期律,碘应排在碲的前面,因为碘的原子量为127,碲的原子量为128。但为什么门捷列夫将碲排在碘的前面?
2. 由于铟在矿物中常常和锌共生,人们认为它的化合价和锌一样,都是二价,其氧化物的化学式为InO。从实验测得铟的当量为37.8,所以它的原子量就是75.6。试说明门捷列夫为什么不把它放在砷(原子量75)和硒(原子量78)之间?想象门捷列夫是怎样得出铟的正确原子量而把他排在镉与锡之间的。
3. 根据元素在周期表中的族序数和常见物质的化学式,估计下列物质的化学式:
砷酸钾;钨酸锶;溴酸铷。
4. 用算术平均法估计锶的熔点和密度。已知钙(851℃,17. 1.5g/cm3)和钡(710℃,18. 3.5g/cm3)的相应数据。
参考答案
1. 根据碲和碘的性质(包括化合价),它们分属氧族和卤族。
2.若根据已知原子量将铟排在砷和锡之间,则硒就要移到氯的下面,但硒与氟、氯的性质并不相似;而且溴和碘也要随之移到钠、钾的下面,铷和铯将移到钙的下面。这样将打乱整个周期表的顺序。因此门捷列夫提出铟的化合价应该是三,它的原子量是
37.8 × 3 == 113
这个原子量应该排在镉(原子量112)和锡(原子量118)之间,位于第五周期第三主族,恰好与它的三价相对应。
3. 化学式分别是:K3AsO4; SrWO4; RbBrO3.
4. 计算值:781℃,2.5g/cm3(实验测的值:770℃,2.6g/cm3)应当指出,用这种方法得出如此接近的计算值和实验值是不常见的。
鲨鱼也有克星?
以《老人和海》一文而闻名于世的海明威在自己熟悉的海域里做以药防鲨实验,把含有硫酸铜和不含硫酸铜的诱饵互相交错的置于海面上。结果,两天后,他惊奇地发现,鲨鱼已把不含硫酸铜吃得精光,相反,含硫酸铜的诱饵动却未动,海明威高光地跳起来,他终于发现,硫酸铜可以防鲨鱼。
二战时,战争不仅在陆地上,海面上仍充满战争,空前残酷,被击中的战船上的船员只有弃船而逃,却面临另一挑战--鲨鱼。因此,美国政府号召全国有识之士来研究防鲨药品,由海明威的故事,他们很快地配备起用硫酸铜作“护身符”来防鲨鱼。
砷与社会
早在公元前10世纪,我国已把雄黄用作丝织品的黄色染料,公元前5~3世纪的战国时代已能用毒砂(砷黄铁矿)、砒石等含砷矿物烧制砒霜(As2O3),并知“人食毒砂而死,蚕食之而不饥”。因此把它制成杀鼠药和用在蚕病防治上。在西方,古希腊曾把砷化物作为强壮剂及造血剂,并称妇女每天少量食用后可使皮肤变白,成为“白色美人”,现在看来,这种作用可能是使健康受损,或抑制了体内的酪氨酸,减少黑色素形成,使人变苍白的结果。西方化学史家虽然认为单质砷是在1250年前后,由日尔曼炼金术士阿尔伯特(AlbertusM.)用砷化物制得的,但我国化学史家则指出,公元4世纪前半叶,东晋炼丹术士葛洪(287~363)已经制出单质砷。到明代,我国已能大量生产砒霜,当时的生产作坊,年产可达15万千克,这样大量生产的砒霜,主要在农业上作为杀虫药剂,保证了粮食丰收。
一、 砷与环境和人
砷广泛分布于自然界,主要以砷黄铁矿(FeAsS,FeAs2)、火山岩中的鸡冠石(AsmSn)、含于火山喷出物中的雄黄(AsmSn)及其共性矿物雌黄(AsmSn)等形式存在。砷在我国是丰产元素,云南的大理、巍山及湖南慈利等地盛产雄黄、雌黄,湖南郴州等地出产毒砂(即砷黄铁矿),贵州、广东等省也有不少砷矿藏。地表土壤中含砷量约为6×10-4%,海水中约含3×10-7%,一些城市污染的大气中常含有较多的砷。尽管海水中砷浓度很低,但海洋生物体中的砷含量,却比陆地生物高出1~3个数量级,但海洋生物体中的砷主要以有机态形式存在,而且它们是构成这类生物体的必需成分。
二、砷化物的毒性
由于砷化物的毒性,故当人们开采和炼制含砷矿物时,不但会给矿山业者带来危害,同时也会对周围环境带来严重污染,更加上作为古老剧毒药物的三价砷化物,也不时地出现引起人们关注的社会问题。十多年前,珠江上游出现的土法炼砒霜厂,由于缺乏环保措施,致使砷尘飞扬,村民和炼厂工人大量中毒,死亡率达17%。前几年,黔西南一些农村,由于使用含砷高的煤作燃料,因为含砷烟雾的污染,造成大量人畜中毒和死亡,而且原来森林密布的山头,变成了荒山秃岭,水库中的生物绝迹。1956年,在日本发生了轰动世界的森永奶粉事件,由于该公司出售的奶粉中,混入(2.0×10-6~3.0×10-6)%的5价砷化合物,当婴儿每天摄入1.3~3.6mg的砷,在2~3周后,就会出现急性或亚急性中毒,出现肝肿涨、皮肤黑化,急性肾功能及心脏功能损伤,结果有1.2万人中毒,130多人死亡。中毒婴儿长到几岁后,又出现痴呆、畸形、残疾等症,给家庭带来灾难。60年代我国山西平陆县发生了抢救误食含砷食物中毒民工的“为了61个阶级弟兄”的动人事件。1991年河南财专学生××,将350g砒霜投入食堂面粉中,造成近800名学生中毒,成为建国以来的特大投毒案。砷中毒时,常在摄入30~60min后出现症状,口服中毒者,主要表现为消化系统症状,即腹痛、呕吐、水样或血性腹泻,吞咽困难,口腔及呕吐物有大蒜气味,重者会出现痉挛、心脏麻痹及急性肾功能衰竭等症而导致死亡。砷化物进入体内后,由于砷酸盐与体内的磷酸盐间的拮抗作用,从而抑制了呼吸链的氧化磷酸化,进而降低了细胞内的呼吸作用。此外,无机砷化物能与酶分子中的SH基作用,致使机体代谢发生改变,并知这种抑制酶活性的能力,三价砷又大于五价砷。亚砷酸的中毒量,一般为5mg,其最低致死量为0.4mg·kg-1。虽然多数海产品的含砷量尽管都在1.00×10-6%以上,但当一人食入200g(干重),即相当吃进20mg以上的砷时,也未见有中毒者出现的报道。
三、 砷在农、医、电子工业等方面的应用农业
生产上,信石、砒霜等是最早用于防治飞蝗、蝼蛄、地老虎等害虫的无机砷杀虫剂。1892年人们又发现砷酸铅(PbHAsO4)能有效防治舞毒蛾,并于1906年首先在美国工业化,后来主要用它防治果树上的叶食性害虫。1927年在美国又制出了砷酸钙[Ca3(AsO4)2],1924年开始大量生产,用于防治棉花害虫及多种咀嚼口器害虫。但此类农药随着六六六、滴滴涕及其他杀虫剂的问世,加之砷、铅等的毒性,使用逐渐减少。1956年德国Bayer公司首先开发出有机砷杀菌剂——福美甲胂(Urbazid)(式1)用于防治水稻纹枯病,它还能防治果树、棉花、烟草等多种作物的病害,但因其对稻类有药害,故常制成复合剂使用。此外还有福美胂(式2)、甲基硫化胂[(CH3AsS)3]、甲基砷酸铁铵[(CH3AsO3)FeNH4]等,由于它们对多种植物病害的防治有着良好的效果,故曾使用了很长时期。(NCH3CH3CSS 2AsCH3(式1)(CH3)2NCSS3As(式2)这类农药进入菌体后,由于能代谢成氧化亚砷的衍生物(AsRO),故能与组织中的蛋白质及酶分子中的SH基结合,而起到毒杀作用。RAsO+2酶SHRAsS酶S酶+H2O然而这类含砷杀菌剂和含砷杀虫剂一样,由于它对人、畜的剧毒性,故在1996年,我国化工部已经把它们列入限制生产和使用的农药目录之中。在医药方面,中医早就把雄黄用作杀虫和解毒药,外用治疗癣疥,内服治疗中风、小儿惊痫等症。13世纪开始,我国又用砒霜或砒石(FeAsS)等含砷药物驱除梅毒,治疗性病取得了良好效果。在国外,由于砷化物对细胞的破坏,特别对亚急性肿瘤敏感,故曾用亚砷酸钾治疗慢性白血病和何杰金氏病(Hodgikid.)(淋巴网状细胞瘤)。1905年,人们又发现氨基苯砷酸钠[atoxyl;NH2C6H4AsO(OH)2]对治疗人的锥虫病有显著疗效。应当特别提出的是,1907年,艾利希(Ehrlichp.)及其同事,经过长期试验和研究,发明了六○六(亦称洒尔佛散或胂凡纳明)(式3),它是一种对梅毒及其他螺旋体病有特效,而且比较安全的新药,这在当时医学界上是一项重大成就,开创了化学治疗的先例。艾利希不但创造了“化学治疗”一词,并阐明了这种药物的治疗作用,在于它在体内代谢成的氧苯胂(C6H5AsO)能与寄生在体内的梅毒菌体的SH基反应,起到毒杀作用。此后又改进制成使用更方便的九一四(亦称新洒尔佛散或新胂凡纳明)(式4): NH2HOAsAsNH2OH(式3)NH2HOAsAsNHCH2SO2NaOH(式4)近年来,这类药物虽然相继被更安全、有效的抗菌素所代替,但是含砷药物的研制并未停止。如在80年代出现的,能通过口服在肠内有效地杀死阿米巴的苯砷酸[C6H5AsO(OH)2]衍生物,治疗寄生虫感染的驱虫剂滴芬塔胂(式5)等:AsOOHOHNHCH2CH2NHAsHOOHO(式5)随着电子工业的发展,使得砷化镓(GaAs)、砷化铟(InAs)等金属间化合物,作为半导体材料的需要急剧增加,尤其是GaAs及GaAsxPx-1作为半导体激光器,用于通讯、医学、电脑、精加工、激光雷达等多方面。随着砷化镓制备技术的提高,相继制出了纯度更高的砷化镓半导体,这种材料不但能极大地提高电子运行速度,而且由于它抵抗外层空间辐射的能力比硅强,故更适用于在卫星等航空器上使用,进一步推动电子通讯技术的发展。此外,三氧化二砷还大量用于玻璃制造上的脱泡剂和消色剂。将金属砷添加至铜或铅中,可以提高它们的加工硬度和耐腐蚀性。用砷的硫化物、硒化物加在玻璃中,制成的可透过红外线的玻璃,用作红外光谱仪、红外照相机等镜头材料。 四、 结束语 由于砷化镓半导体材料的出现,使人们进一步加强了对砷的有用性的认识。然而随着砷矿的开采,砷化物的生产、研制和使用的扩大,砷对环境的影响也更加令人关注。表2列出了我国对砷化物在环境中的最高容许量(GB5749—85),如果超标,应及时治理,否则会污染环境,危及人类的健康。表2 砷化物在环境中的最高容许量大气0.003mg/m3(日平均)地面水0.05mg/L饮用水0.04mg/L土壤15mg/kg排放废水0.5mg/L灌溉水0.05mg/L
神秘的战船起火案
从前,古罗马帝国的一支庞大船队耀武扬威地出海远征。船队驶近红海,突然,一艘最大的给养船上冒出了滚滚浓烟,遮天蔽日。远征的战船队只好收帆转舵,返航回港。
远征军的统帅并不甘心,费尽心机要查出给养船起火的原因。但是,查来查去,从司令官一直查到伙夫、马弃,没有任何人去点火放火。
这桩历史奇案还是后代的科学家研究出了一个结果,找到了起火的原因。原来是给养船的底舱里堆积得严严实实的草自发燃烧起来的。这种现象叫自燃。
草怎么会自燃呢?
给养船底舱的草塞得密不透凤,有的开始缓慢地:氧化,这实际上是一种迟缓的燃烧,放出热来,热散不出去,热量越聚越多,温度升高,终于达到草的着火点,于是就自发地着火了。
在我们的生活中,自燃现象也不少见。农村的柴草垛,工厂的煤堆,有时会莫名其妙地冒热气,甚至生烟起火。有些废弃的煤矿,往往连续不断地发生自燃。弄清了发生自燃的科学道理,我们就可以设法预防了。
在堆放煤和柴草的时候,垛不能太大、太高,防止热量聚集。
在煤堆中央,埋进几个铁篓子,从篓子里伸出铁管,通到煤堆顶上,这样可以使内部积存的热量迅速发散出来。
保持良好的通风,可以把缓慢氧化产生的热带走,降低温度。消除了燃烧的温度条件,自燃也就杜绝了。有经验的仓库工经常翻仓倒垛,也是为了防止可燃物质白燃。
当然不是说你想防止就能防止。请大家多关注一下“火焰山”——正在燃烧的新疆地下煤矿!
用光发现新元素
本生和基尔霍夫
在有关原子—分子概念的争论中,一直注意着理论的发展却从不介入争论的本生,在以化学分析为中心的多个领域内深入研究、富有创新,极大地推动了近代化学的发展。他和基尔霍夫共同发现的光谱分析法,为元素的定性鉴定和新元素的发现开辟了一条新路。
1811年3月31日,罗伯特·威廉·本生出生于德国的哥廷根。他的父亲是哥廷根大学图书馆主任兼近代语言学教授,他的母亲庄重而机敏,罗伯特是他们四个儿子中最小的一个。
罗伯特于1828年进入哥廷根大学,主要学习自然科学如化学、物理学、矿物学、地质学、植物学、解剖学和数学。哥廷根大学当时的化学教授是于1817年发现镉的斯特罗迈耶。1830年本生写了一篇介绍湿度计发明以来约40种湿度计的综述而荣获科学奖金,并于1831年秋获得博士学位。此后他在汉诺威市政府的资助下,到各地进行学术旅行,广泛交游增长知识。德国的卡赛尔、吉森、柏林、波恩等地,都留下了他的足迹;有机化学家李比希、无机化学家米切尔利希、苯胺的发现者朗格、地质学家韦斯、矿物学家和分析化学家罗斯兄弟等,都成了他的良师益友。
经过3个星期的山地地质考察,1832年9月,本生到达巴黎。在巴黎期间他曾在盖?吕萨克的实验室工作,并在综合技术学校听讲,结识了不少法国著名学者,还参观了著名的陶瓷工厂。1833年5月到7月,他又到维也纳参观工矿企业。
1833年底,游学回来的本生担任了哥廷根大学的讲师。在此期间他完成了他的第一项研究成果。他在研究某些化合物的溶解度时发现,金属的砷酸盐不溶于水。他试验用新沉淀出的氢氧化铁与亚砷酸反应,结果得到了既不溶于水又不溶于人体体液的砷酸亚铁。直到现在,人们仍然使用本生发明的这一方法,用氢氧化铁来解救砷中毒(即砒霜中毒)。
1835年底,本生代授刚刚去世的斯特罗迈耶教授的课程。1836年1月维勒教授应聘接替斯特罗迈耶的职务后,本生转勤卡赛尔技术工业学校接替维勒教授的职务。几经转折,本生于1852年到海得尔堡大学接替退休的格梅林教授的职务。在这里他辛勤工作达37年之久,直到78岁高龄才退休。
1855年,巴登政府为本生在海德尔堡大学建造的化学实验室落成,在那里本生除了自己进行科学实验以外,还指导了一大批青年学生,他们在本生的严格训练下,在19世纪后期都成了有名的科学家。
新落成的实验室里铺设了煤气管道,学生们都用煤气灯作加热器具。煤气灯的火焰很明亮,不断地冒着黑烟。由于煤气燃烧不充分,火焰的温度不高。本生改造了煤气灯,就是在喷嘴下面开一个小孔,让煤气在燃烧之前就与空气混合,这样得到的火焰不发亮光,火焰几近无色,很稳定,温度也很高。后人将这种灯叫做本生灯。在本生灯无色火焰的灼烧下,金属及其盐类能产生各种特征颜色,即发生焰色反应。本生经常用这种分析方法来鉴别各种金属。本生在教学和科研中都特别强调实验的重要性,他非常喜欢自己设计仪器,常常熟练地吹制自己需要的玻璃仪器。经年累月的实验使他的手指结了厚厚的一层茧,这样,他的手指不仅不怕酸、碱的腐蚀,甚至不怕150℃的酒精灯内焰的灼烧。
本生对科学具有广泛的兴趣,早期研究有机化学,后来又涉猎无机化学,他用化学方法研究地质现象,对现代岩石学有不小的启发。而他最大量的研究工作和最重要的贡献是发明了许多鉴定、分离无机物的分析方法。其中的光谱分析法使他和物理学家基尔霍夫(1824——1887)名扬四海。
古斯塔夫·罗伯特·基尔霍夫是本生在布雷斯劳大学结识的好朋友。本生到海德尔堡大学任教后,十分想念基尔霍夫,就劝基尔霍夫也来海德尔堡大学任教。果如他们所愿,后来他们经常在海德尔堡大学校园内共同散步。本生高大健硕,个头在一米八以上;而基尔霍夫瘦小精干,轻松快活,口中喋喋不休地说着各种有趣的事情和他的实验;本生则默默地听着,偶尔插上一两句。本生注重实验,而基尔霍夫更具有物理学家的思辩和推理能力,他在光谱学上造诣很深。
谈到光谱分析法,得从大约在他们200年前研究光谱的牛顿说起。
牛顿与弗朗和斐
1663年,剑桥大学的学生、21岁的牛顿开始研究颜色的问题,这是他全部科学创造生涯的开始。1666年他进而开始研究光谱。1672年2月牛顿在伦敦皇家学会的《哲学会刊》上发表了它的第一篇论文《光和色的新理论》,提到:“1666年初,我正磨制一些非球形的光学玻璃镜,其中有一块三角形玻璃棱镜,用来试一下大家熟悉的颜色现象。我遮暗了房间,把窗帘拉开一个小缝,让适当的阳光透进来。在窗的入口处放了这块棱镜,使光折射到对面的墙上。于是看到这束光变成了光艳夺目的绚丽彩带,引起了我极大的兴趣。”牛顿把这种色带命名为光谱。牛顿和他的老师巴罗将单色光再经过三棱镜折射后发现,单色光的颜色并不改变。后来牛顿又将各色光经过棱镜折射混合在一起,结果得到了白光!1671年,他做出判断:白色的太阳光“是一种由折射率不同的光线组合成的复杂的混合光。”1675年,他进一步指明了光的不同折射率与颜色的关系,正确地解释了日光通过三棱镜后所以会展现成光谱的原因,并且指出:“颜色是一种原始的、天生的性能,并不是光线经过折射或反射而导出的,折射和反射也不能改变它的颜色。”
牛顿对太阳光谱的研究成果是一项划时代的科学成就,揭开了一个崭新的科学天地。从此以后,观察和研究光谱的人越来越多,观测技术也日益高明,光谱学作为一门新的学科诞生了。
1802年,法拉第的好友,英国化学家武拉斯顿仔细观察了太阳光谱,发现光谱中各颜色间并不是完全连续的,其中夹杂着不少暗线。遗憾的是他并没有深入地去探讨这个重要的发现,却误把这些暗线的出现归咎于棱镜的缺陷。1814年,德国物理学家弗朗和斐(1787—1826)则紧紧抓住了这一现象。他曾把油灯、酒精灯、烛光作光源,观察这些火焰的光谱,发现所有这些光谱都是线状的,不连续的,再某一确定的位置上都出现两条明亮的黄线。于是他又进一步研究太阳光,本想在其光谱中找到那两条黄色的亮线,但没有找到,只发现在太阳光谱中有许多暗线,仔细数了数,竟有576条。他用字母A、B、C、D、E、F、G把其中最主要的线标上了代号。后人把这些暗线叫做弗朗和斐线。
弗朗和斐后来又兴致勃勃地观察了行星的光谱,发现其中也有一些暗线,并和太阳光谱中的暗线位置相同。他也观察了电弧火焰的光谱,发现它的光谱与太阳光谱截然不同,是由一系列明亮的谱线组成的。当他把太阳光谱与火焰光谱进行对比时,发现火焰光谱中的两条明亮黄线恰恰落在太阳光谱中被他标上了D的两条暗线的位置上(即我们现在所称的钠-D双线)。那末,太阳光谱中的暗线是怎样形成的?几乎各种火焰中都存在的明亮黄线恰恰落在D暗线的位置上又意味着什么哪?弗朗和斐百思不得其解。
缤纷的光谱——光谱分析法
本生在散步时向基尔霍夫谈到他用火焰颜色来鉴别各种金属,但有些金属灼烧时火焰的颜色很相近,他就透过有色玻璃片来进一步鉴别。基尔霍夫听了马上说:“如果我是你,我就用棱镜来观察这些火焰的光谱。”
第二天,基尔霍夫就带了棱镜和其他一些光学仪器来到本生的实验室。他们制作了分光镜,通过分光镜,金属灼烧时发出的各种光变成了明亮的谱线,每种金属对应一种它自己特有的谱线。灼烧时都是红色火焰的锂和锶,在分光镜中就呈现出不同的谱线——锂是兰线、红线、橙线和黄线,而锶是一条明亮的红线和一条较暗的橙线,它们毫不含糊地区分开了!
这是1859年初秋的一天,一位化学家和一位物理学家亲密合作,共同发明了光谱分析法。
当他们将少量氯化钠放在本生灯的火焰上时,分光镜中出现了两条黄色的谱线。基尔霍夫想起了弗朗和斐线,他仔细观察,发现两条黄线的位置恰好落在太阳光谱中的钠-D双暗线上。同一位置,一明一暗,是不是太阳上缺少钠呢?他们又让太阳光进入分光镜,看到了钠-D双暗线,然后在分光镜前灼烧氯化钠,希望钠明亮的黄线能“抹平”太阳光谱中的D暗线。意外的是,D暗线更黑了!如果把太阳光遮挡住,则钠明亮的黄线又出现了,而且准确地落在钠-D双线的位置上。
对这一实验事实的解释,基尔霍夫认为,只能承认炽热的钠蒸气即能发射钠-D双线,又能吸收钠-D双线。于是,他们用氢氧焰煅烧生石灰,使它发出的连续光谱进入分光镜,在分光镜前放上本生灯灼烧氯化钠,果然看到了在石灰的连续光谱中出现了两条暗线,其位置恰好落在钠-D双线的位置上。这时,如果将其他的盐类放入本生灯的火焰内,也会出现一些暗线,这些暗线的位置恰好与所灼烧金属盐的特征光谱相重合。
他们明白了:太阳中不是没有钠,而是有钠。弗朗和斐暗线和本生灯灼烧金属盐时发出的亮线一样,也能反映出太阳上存在的元素。
1859年10月20日,基尔霍夫向柏林科学院提交报告说:经过光谱分析,证明太阳上有氢、钠、铁、钙、镍等元素。
他的见解和新发现立即轰动了全欧洲的科学界,在地球上居然检测出了一亿五千万公里之遥的太阳上的化学元素组成!光谱分析法很快成了化学界、物理学界和天文学界开展科学研究的重要手段。
从那时起便知道,炽热的原子蒸气能发射或吸收线光谱,而固体和液体发出的是连续光谱,例如灯泡里白炽的灯丝和石灰煅烧时,发出的都是连续光谱。
天蓝色和深红色——新元素铯和铷
本生和基尔霍夫认为,光谱分析法能够测定天体和地球上物质的化学组成,还能够用来发现地壳中含量非常少的新元素。他们首先分析了当时已知元素的光谱,给各种元素做了光谱档案。这就象人的指纹,各不相同。
考虑到碱金属的谱线格外明亮、灵敏,他们决定从寻找新的碱金属元素开始。1860年他们开始检验各处的海水和矿泉水。当他们取来瑞典丢克海姆一地的矿泉水,将它浓缩,再除去其中的钙、锶、镁、锂的盐,制成母液进行光谱分析时,奇迹出现了——他们将一滴母液滴在本生灯的火焰上时,分光镜中除了有钠、钾、锂的谱线以外,还能看到两条明显的蓝线!
5月10日他们向柏林科学院提交报告说:“截至目前为止,已知的元素都不会在这个光谱区显现出两条蓝线。因此可以做出结论,其中必然有一种新元素存在。大概属于碱金属。我们将它命名为Cesium(中译名为铯,含义为天蓝色)。”
除了报告,本生和基尔霍夫还没有得到一点纯净的铯或者是铯的化合物。但科学家们还是很快就承认了这个新元素的发现。这在元素发现史上还是从未有过的先例。后来本生处理了几吨矿泉水,付出了巨大的劳动,终于在1860年11 月制得了铂氯酸铯。
他们还知道在一种鳞状云母矿中含有丰富的锂。他们将萨克森产的这种矿石制成溶液,加入少量氯化铂,产生了大量沉淀。用分光镜鉴定这种沉淀时,只看到钾的光谱线。他们又用沸水洗涤这种沉淀,每洗涤一次,都要用分光镜检验一遍。他们发现,随着洗涤次数的增加,从分光镜中观察到的钾的光谱线逐渐变弱,最后终于消失;同时又出现了另外两条深紫色的光谱线,它们的颜色逐渐加深,最后变得格外鲜明,激动人心地出现了几条深红色、黄色、绿色的谱线,他们不属于任何已知的元素!本生和基尔霍夫确信这又是一种新发现的碱金属元素,1861年2月23日他们向柏林科学院报告:“我们又找到了一个碱金属,由于它的深红谱线,我们建议给它取名Rubidium(中译名铷,深红色的意思)。”
1862年本生加热碳酸铷和焦炭的混合物,用热还原法制得了金属铷。
光谱分析法更加风行起来。1861年克鲁克斯(1832—1919)发现了铊(Thallium,原意是绿色的树枝),克鲁克斯本人后来成了光谱分析专家;1863年里希特发现了铟(Indium,靛蓝的意思);1875年布瓦博得朗发现了镓;1879年尼尔森发现了钪;1886年文克勒发现了锗,他们用的都是光谱分析法。
新的黄线——发现“太阳元素”
在弗朗和斐的实验中,几乎各种火焰的光谱中都有两条明亮的黄线,恰好落在太阳光谱钠-D双线的位置上,这使弗朗和斐百思不得其解。基尔霍夫和本生正确地揭示了个中缘由——海风吹来的氯化钠象灰尘一样落满了当时较为简陋的实验室的各个角落,而钠的黄线十分明显,只要有三百万分之一毫克的钠,就足以显出那两条黄色的谱线。
1868年10月26日,巴黎科学院收到了两封信,一封是法国米顿天体物理观象台台长、天文学家让桑(1824—1907)寄来的,报告他8月18日在印度观测日全食时,当把分光镜的物镜对准日珥部分时,看到了几条亮线,其中有一条格外明亮的黄线,但不是钠-D双线。另一封来自英国皇家科学院太阳物理天文台台长洛基尔(1836—1920),信中所述内容与让桑的报告几乎完全相同。
法国科学界争相传告这一发现。经过查对,这条黄线只能属于某种未知的新元素。有史以来第一次在地球上发现了太阳上的新元素。于是法国科学院将它命名为Helium(氦),意思是“太阳元素”,其字根Helios,指希腊宗教中的太阳神。1878年,为了纪念氦的发现十周年,巴黎科学院铸造了金质纪念牌,一面是太阳神驾着四套马车的浮雕,另一面是让桑和洛基尔的雕像。
1895年之前,即“太阳元素”发现后的27年中,科学家们都认为氦只存在于太阳上,无法再进一步研究,大家只是猜想,它可能是一种很轻的气体。
光谱分析法只是本生众多科学发现中较为辉煌的成就。他一生获得了很多科学奖励和荣誉,但他仍然非常谦逊。每当他在讲演中必须提到自己的发明时,他从不说“我已经发现了”;却总是说“别人曾经看见”。每当他在讲演中提到光谱分析时,他的学生们总是用长时间的掌声来表达他们对老师伟大功绩的尊敬和自豪。
本生终生未娶,他把毕生的精力都用在科学探索和培养学生上,直到78岁才辞去海德尔堡大学化学教授的职务。此后十年,他经常单独或邀请朋友一起旅游,晚年的生活是愉快的。1899年8月16日,这位拥有几十项发明创造的科学家与世长辞,享年88岁。
习 题
1. 1862年本生加热碳酸铷和焦炭的混合物,用热还原法制得了金属铷。写出该反应的化学方程式。
2. 一家公司怀疑某种新型钢材中添加了很少量的稀土元素。怎样能尽快地鉴别出这种稀土元素?
参考答案
1. Rb2CO3 + 2C == 2Rb + 3CO
2. 取少量这种新型钢材加热至成为气态,观察其气态原子的线状光谱,与各种稀土元素的光谱比较,即可鉴别是否含有稀土元素。
蜘蛛的启示
三百多年前,英国有一位年轻的科学家对“八卦飞将军”蜘蛛发生了浓厚的兴趣。他经常从早到晚,目不转睛地观察蜘蛛。他看见蜘蛛忙忙碌碌,吐丝织网。刚从蛛囊里拉出的细丝是粘液,迎风一吹,一瞬间变成又韧又结实的蛛丝。(嘿嘿 偶的想象)
这位青年科学家想,要能发明一个机器蜘蛛,“吃”进化学药品,抽出晶莹的丝来纺线织布,那该多好啊!他一头扎进化学实验室,摆弄起瓶瓶罐罐,用各种化学药品做开了试验。他用硝酸处理棉花得到了硝酸纤维素,把它溶解在酒精里,制成粘稠的液体,通过玻璃细管,在空气中让酒精挥发干以后,便成了细丝。这是世界上第一根人造纤维。但是这种纤维容易燃烧、质量差、成本高,没法用来纺纱织布。
后来,科学家模仿吐丝的蚕儿,将便宜、易得的木材里的木质纤维素溶解在烧碱和二硫化碳里,做成粘液,再在水面下喷丝,拉出千丝万缕。这就是大名鼎鼎的“人造丝”(粘胶纤维)。它的长纤维可以织成人造丝印花绸、人造丝袜。短纤维造出“人造棉”布、“人造毛”呢。它们穿着舒适,和棉麻织物差不多:透气良好,容易吸水,可以染上漂亮的颜色,而且价格低廉,颇受欢迎。这样,人造纤维在问世仅三十年后,就代替了十分之一的棉、麻、丝、毛。
可是,人们并不满意。人造丝、人造棉潮湿的时候很不结实,洗涤后容易变形,缩水严重。再说,人造纤维虽然扩大了原料的来源,把不能直接纺纱织布的木材、短的棉花纤维、草类利用了起来,可是,资源毕竟有限。于是,人们眼光从天然纤维跳到了矿物上头,石头、煤、石油能不能变纤维呢?
五十年前,德国出现了用煤、盐、水和空气做原料制成的聚氯乙烯纤维(氯纶)。它的化学成分和最普通的塑料一个样。这是最早的合成纤维。用氯纶织成的棉毛衫裤、毛线衣裤,既保暖又容易摩擦后带静电,穿着它,对治疗关节炎还有好处呢。
比氯纶晚几年出世的尼龙(锦纶),比蛛丝还细,但非常结实,晶莹透明,一下子以它巨大的魅力使人们着了魔。用尼龙丝织成的袜子结实耐磨,一双顶四五双普通的棉线袜穿用。曾经很流行的“的确良”(涤纶),挺括不皱,免烫快于,是产量最大的一种合成纤维。晴纶,俗称“合成羊毛”,蓬松耐晒,用它做的毛线,毛毯,针织衣裤,我们都很熟悉。价廉耐用的维尼龙(维纶),织成维棉布,做床单或内衣,吸水、透气性跟棉织品差不多。维纶棉絮酷似棉花,人称“合成棉花”。除了涤纶、锦纶、睛纶、维纶四大合成纤维外,由丙烯聚合而成的丙纶一跃而起,成为合成纤维的新秀。
丙纶是比重最轻的合成纤维,人水不沉。飞机上的毛毯、宇航员的衣服用它制作,可以减轻升空的负担。如今,化学纤维的年产量已经和天然纤维平起平坐了,而它在国民经济和国防事业上的作用却远远超过了天然纤维。不过,今天规模巨大的“机器蚕”在日夜运转,还多亏了蚕儿吐丝、蜘蛛织网给人们的启示呢!
百炼成钢
已我国古代的钢铁冶炼技术在世界上是遥遥领先的,据有关出土文物证明我国的炼铁炼钢要比欧洲早一千多年。
早期的炼铁是将铁矿石和木炭一层夹一层地放在炼炉中,在650-1000℃和上焙烧利用木炭的不完全燃烧产生的一氧化碳使铁矿石中的氧化铁还原成铁。由于炼炉中温度偏低,不能使熔点为1535℃的铁熔化,所以到液态的铁。人们等炼铁成功后冷却炼炉,取出铁块,这种炼铁方法叫块炼铁。用这种方法炼得铁质地疏松,还夹杂着许多来臬矿石的氧化物和经。在实践中人们发现如果把这种铁,加热到一定温度下经这反复锻打,就可把夹杂的氧化物挤出去,此时铁的机械性能就得到了改善。
在反复锻打铁块的基础上,古人又出块炼铁渗碳成钢的经验,这种钢地就是最早的钢。它是为改变块炼铁的性能而要用木炭作燃料,加热块炼铁并打,这样少量的碳会从铁的表面渗进去。西汉时,为提高块炼铁渗碳钢的质量,人们啬增加了锻打的次数,由十次,三十次,五十次增至近百次从而得到所谓的“百炼钢”。由此也产生了“百炼成钢”这一成语,它用来比喻久经锻炼,变得非常坚强,成为优秀人物。
化学史大事年表
约50万年前 |
“北京猿人”已会用火 |
约公元前3000年 |
埃及人已用采集的金银制作饰品 |
约公元前2000年 |
中国已会铸铜 |
约公元前17世纪 |
中国已开始冶铸青铜 |
公元前1400年 |
小亚细亚的赫梯人已会冶铁 |
约公元前1200年 |
中国商代已使用锡、铅、汞 |
公元前10世纪 |
埃及人已会制作玻璃器具 |
公无前6世纪 |
中国发明了冶炼生铁 |
公元前5世纪 |
中国《墨子·经下》提出物质的最小单位是“端”的观点 |
公元前4世纪 |
古希腊的德谟克利特提出朴素的原子论:古希腊的亚里士多德提出“四元素”学说 |
公元前3世纪 |
中国发展起块铁渗碳的制钢技术 |
公元前2世纪 |
中国西汉已有用胆水制铜的记载 |
公元前140--87年 |
中国发明了造纸术 |
前1世纪到1世纪 |
中国《木草经》成书 |
2世纪 |
中国魏伯阳的《周易参同契》成书,这是世界上最早的一部有关炼丹术的著作 |
7到8世纪 |
中国唐代初年孔思邈著作中的《伏硫磺法》篇里最早记有火药的三种成分 |
10世纪 |
中国宋代把火药用于制造火药箭、火球等武器 |
13世纪 |
中国火药传入阿拉伯 |
16世纪 |
中国明代已用锌制造黄铜 |
1661年 |
英国的波义耳在《怀疑派化学家》书中给元素下了科学的定义 |
1703年 |
德国的施塔尔把燃素说系统化 |
1772年 |
瑞典的舍勒制得了氧气 |
1777年 |
法国的拉瓦锡发表《燃烧概论》推翻了燃素说 |
1799年 |
普罗斯提出了定比定律 |
1802年 |
法国费歇列出了第一个酸碱当量表 |
1803年 |
英国道尔顿提出原子论 |
1804年 |
英国的道尔顿提出倍比定律 |
1807年 |
英国的戴维首次用电解熔盐的方法取得了金属钾和钠 |
1808年 |
法国的盖吕萨克提出气体反应体积定律 |
1810年 |
戴维确定氯是种元素 |
1811年 |
意大利的阿佛加德罗提出分子假说 |
1828年 |
德国的维勒用无机物氰酸铵制出尿素 |
1834年 |
英国法拉第提出电解定律 |
1852年 |
英国弗兰克兰提出原子价的初步概念 |
1857年 |
德国凯库勒指出碳是四价 |
1860年 |
分子说得到世界公认 |
1861年 |
俄国的布特列洛夫提出并论述了化学结构学 |
1864年 |
挪威的古德贝格和瓦格发展和确立了质量作用定律 |
1867年 |
瑞典的诺尔贝制成用硅藻土吸收硝化甘油的炸药 |
1869年 |
俄国的门捷列夫提出了他的第一个元素周期表 |
1874年 |
荷兰的范特甫和法国的勒贝尔各自提出碳原子的正四体理论 |
1884年 |
提出了勒沙特利原理 |
1887年 |
瑞典的阿仑尼乌斯提出了电离学说 |
1893年 |
瑞士的维尔纳提出了络合物的配位理论 |
1895年 |
德国的奥斯特瓦尔德提出催化剂概念 |
1898年 |
法国的居里夫妇发现钍有放射性并发现了钋 |
1906年 |
俄国的茨维特发明色层分析法 |
1911年 |
英国的卢瑟福提出原子核模型(1908年因其在研究元素核衰变和原子结构上的成就荣获诺贝尔化学奖) |
1913年 |
丹麦的波尔根据量子理论提出原子结构模型 |
1934年 |
法国的约里奥、居里夫妇发现人工放射性(1935年荣获诺贝尔化学奖) |
1942年 |
中国的侯德榜发明了联合制碱法 |
1952年 |
欧格尔提出配位场理论 |
1961年 |
改用碳12为原子量的标准 |
1962年 |
加拿大的巴特来合成了第一个惰气化合物(XePtF6) |
1965年 |
中国科学家合成出牛胰岛素,是首次人工合成蛋白质 |
1969---1974年 |
美国的乔索等合成104、105、106号元素 |
酚酞
酚酞是大夫的良药,在医药上酚酞是一种缓泻剂,它能温和的刺激肠壁,增加肠的蠕动,在“果导”中就有酚酞。
|