教学内容:分数的基本性质 教学目标: 1、知识目标:理解并掌握分数的基本性质,能用分数的基本性质解决一些简单的问题。 2、能力目标:培养学生观察、比较、抽象、概括等初步的逻辑思维能力,并且能够正确认识和理解变与不变的辨证关系。 3、、情感目标:渗透事物是相互联系,发展变化的辩证唯物主义的观点。通过学生的成功体验,培养学生热爱数学的情感。 教学重点:理解和掌握分数的基本性质的具体内容,沟通与商不变的规律的联系与区别。 教学难点:在通过观察、比较后抽象、概括出分数的基本性质。 新课设计:引--探--议--练 1.创设情境,引疑激思 2.自主探究,获取新知 3.议论争辩,顿悟创新 4、训练技能,激励发展 一、故事设疑,揭示课题。 1、三个和尚分饼的故事,让学生猜测三个和尚分饼多少? 2、老和尚把饼分给三个小和尚大小相等吗 3、比较三个分数什么变了什么没变? 提供材料:用手中的材料来比较 、 、 的大小 活动目的:猪八戒选择哪一个分数表示的部分的西瓜最合算 活动分工:六人一小组。组长一名,操作员四名,记时员一名。 活动步骤: (1)组长进行分工,操作员进行操作,记时员负责提醒时间。 (2)四名操作员利用手中的圆片,先折一折,再用水彩笔画出组长分配给自己的分数表示的部分。 (3)完成后,由组长把圆片贴在统计表内,并记录对应的分数。 (4)共同观察统计表,讨论猪八戒应该选哪一部分比较合算。 (5)组长把讨论意见记录在统计表内。 集体交流:证明 = = 的学生可能会有以下方法: ﹡将4张完全一样的长方形纸条(或圆片),分别平均分成4份、8份、16份,并相应地取其中的1份、2份、4份涂上阴影,并比较阴影部分面积的大小。 ﹡在纸上画出同样长度的4根线段,分别平均分成4份、8份、16份,并相应地取其中的1份、2份、4份,比较取出部分线段的长度。 ﹡利用分数与与除法的关系,将1/2、2/4、3/6、4/8四个分数分别化成除法:1÷2、2÷4、3÷6、4÷8,计算出结果,都是0.5。 [设计理念:利用学生熟悉的资源,使学生产生亲切感;制造认识上的矛盾,激发学生的探究欲望,给学生提供充分的自主探索与交流的空间] 二、分析比较,探索规律(找规律、合作交流、汇报、比较) 1、观察几组相等的分数,找出共同的特点 2、小组讨论分子、分母的变化规律是什么? 3、汇报讨论结果 ﹡从 到 ,分数的分子、分母都扩大了2倍,分数的大小不变。(教师适时板书; ) ﹡从 到 ,分数的分子、分母都扩大了4倍,分数的大小不变。(教师适时板书; ) 在以上交流过程中学生可能会根据手中的材料,如开始使用的纸条、圆片,也可能直接根据算式进行叙述。 [设计理念:将规律的探索分成两个阶段,有目的地化解了难点,同时,给孩子探索规律提供了广阔的时间和空间;对于能力较弱的孩子来说,也能在第一阶段学习过程中掌握一定的探索方法。] 三、抽象概括、归纳性质 归纳出分数的基本性质 板书课题:分数的基本性质 归纳性质:我们从左往右看,找出了一条规律。从右往左看,有发现了一条规律。这两条都是分子、分母变化而分数大小不变的规律,你能归纳、总结成一条规律吗? 讨论:为什么要强调"零除外"? ﹡在分数里,分母不能是0,所以分子、分母不能同时乘以0。 ﹡在除法里,0不能作除数,所以分数的分子、分母也不能同时除以0。 沟通联系: (1)你觉得商不变的规律和分数的基本性质有什么区别和联系? (2)你能根据分数与除法的联系,用商不变的规律说明分数的基本性质吗? [设计理念:通过理论,比较自己归纳的内容和书本归纳的内容之间的区别,帮助学生在归纳中逐步完善语言的准确性;注意加强与整数中商不变的规律的联系,既可以帮助学生理解和掌握分数的基本性质,又沟通了新旧知识的内在联系。] 四、多层练习、巩固深化 提问:你觉得学习了分数的基本性质,我们可以运用在哪些方面呢?学生可能会说: ﹡可以把一个分数化成分母不同而大小相等的分数 ﹡如果要把分母不同的分数进行加、减,我们就可以先把它们化成同分母的了 ﹡不同分母的分数,也可以比较大小了 …… 1、口答 2、判断对错 3、对数游戏 4、一分钟写数 5、呼应课始分饼的规律是什么? 应用分数的基本性质解答题把1/2和10/24化成分母是12而大小不变的分数。 [设计理念:规律的学习是为了后续的运用,本环节的设计,为孩子思考"为什么要学""学了有什么用"提供了想象的空间] 五、总结 教师谈话:这节课你有什么收获?为什么?(学生归纳总结) 六、布置作业
|