第五课时
教学内容:容积 教学目标: 1、知道容积的意义。 2、掌握容积单位升和毫升的进率,及它们与体积单位立方分米、立方厘米之间的关系。 3、会计算物体的容积。 教学重点: 1、容积的概念。 2、容积与体积的关系。 教学难点: 容积与体积的关系。
教具:量筒和量杯、不同的饮料瓶、纸杯 教学过程:
一、复习检查:
说出长正方体体积计算公式。
二、准备:
把泥放入一个长方体的小木盒中(压实,与上口平),然后扣出来,量一量泥块的长、宽、高。计算泥块的体积。这个长方体小木盒所能容纳物体的体积是( )。
三、新授:
1、认识容积及容积单位:
(1)箱子、油桶、仓库等所能容纳物体的体积,叫做它们的容积。
通过上面的“做一做”,我们知道长方体小木盒所能容纳物体的体积就是这个小木盒的容积。
(2)计量容积,一般就用体积单位。但是计量液体体积,如药水、汽油等,常用容积单位升和毫升。
(3)演示:体积单位与容积单位的关系。
说一说,在生活中哪些物品上标有升或毫升。升和毫升有什么关系呢?教具演示。
①1升(L)=1000毫升(mL)
将1升 的水倒入1立方分米的容器里。
小结:1升(L)=1立方分米(dm3 )
②1升 = 1立方分米 1000毫升 1000立方厘米 1毫升(mL)=1立方厘米( cm3 )
练一练:
1.8L=( )mL 3500mL=( )L 15000cm3 =( )mL=( )L
1.5dm3 =( )L
(4)小组活动:(1)将一瓶矿泉水倒在纸杯中,看看可以倒满几杯?
(2)估计一下,一纸杯水大约有多少毫升,几纸杯水大约是1升。
2、长方体或正方体容器容积的计算方法,跟体积的计算方法相同。但是要从容器的里面量长、宽、高。
例一个小汽车上的油箱,里面长5分米,宽4分米,高2分米。这个油箱可以装汽油多少升?
5×4×2 =40(立方分米) 40立方分米=40升
答:这个油箱可以装汽油40升。
做一做:一个正方体油箱,从里面量棱长是1.4米。这个油箱装油有多少升?(订正)
小结:计算容积的步骤是什么?
3、我们知道了计算规则物体的体积的方法,如计算长方体的体积是用长乘宽乘高,计算正方体的体积是棱长的3次方。那有些不规则的物体怎么计算它的体积呢?
出示一个西红柿,谁有办法计算它的体积?小组设计方案:
四、巩固练习:
1、生物小组买来一个长方体鱼缸,从里面量长是6分米,宽是4分米,深2.5分米,它的容积是多少升?
2、一个长方体油箱的容积是20升。这个油箱的底长25厘米,宽20厘米,油箱的深是多少厘米?
3、有一个棱长是6分米的正方体水箱,装满水后,倒入一个长方体水箱内,量得水深3分米,这个长方体水箱得底面积是多少?
4、提高题:p55、16
五、作业:
|