|
《数学与文化》教案设计
|
现代科学技术的语言和工具”,“它的思想是许多物理学说的核心,并为它们的出现开辟了道路”,“它曾经是科学革命的旗帜”,这些语句都能说明数学在文化中的地位。而最直接的是“它是现代科学技术的语言和工具”。
(解说:设计这一问题,旨在培养学生提炼主要信息并进行筛选的能力。也许有学生会找到“没有任何一门科学能像它那样泽被天下”这一句,教师要适时引导:这一句只是形象的描述,不是确定的结论。)
(2)第2段中,“这绝不是说‘在某种条件下’,‘绝大部分’三角形的内角和‘在某种误差范围内’为180°”一句中,用了“在某种条件下”“绝大部分”“在某种误差范围内”的限制语,从语言的表述上看严密而准确,但这为什么不是数学追求的“完全确定、完全可靠”的知识?
明确:数学追求的“完全确定、完全可靠”不同于语言表述的严密与准确。数学的对象必须有明确无误的概念,其方法必须由明确无误的命题开始,并服从明确无误的推理规则,以达到正确的结论。
(解说:设计这一问题,旨在让学生理解“完全确定、完全可靠”的含义。)
(3)“数学方法”“逻辑方法”“公理方法”三个概念之间的关系怎样?“数学方法”的具体内容是什么?
明确:三个概念都是一个含义,数学方法指的由明确无误的命题开始,服从明确无误的推理规则,以达到正确的结论的理性思维的过程。
(解说:设计这一问题,旨在引导学生清晰认识人在认识宇宙和人类自己时必须持有的客观态度和标准。)
(4)“除了逻辑的要求和实践的检验以外,无论是几千年的习俗、宗教的权威、皇帝的敕令、流行的风尚统统是没有用的。”结合上下文,说明这一句在文中的含义是什么?
明确:逻辑的要求和实践的检验是一种求真的态度,只有用这种求真的态度才能解开“宇宙和人类的真面目是什么?”这样一个伟大而永恒的迷。此外,“无论是几千年的习俗、宗教的权威、皇帝的敕令、流行的风尚统统是没有用的”,正是数学所具有的这种求真态度使人类摆脱宗教等方面的影响,从而得到思想解放。
(解说:这是一句很难理解的话,首先要搞清楚“习俗、权威”等对什么是没有用的——是对认识宇宙和人类自己。然后确定逻辑的要求和实践的检验是一种求真的态度。正是这种求真的态度使人类思想得到解放,并摆脱宗教等方面的影响。设计这一问题,旨在引导学生从上下文中找到相关信息并进行筛选整合,从而得出较为准确的理解。)
四、课堂小结
这节课主要分析了数学作为文化的一部分所具有的第一个特点。作者从数学探讨的对象和方法指出了数学追求完全确定、完全可靠的知识的特点,并指出其在摆脱宗教等方面影响的作用。
第二课时
一、继续研习课文
(5)是什么在驱使数学不断追求最简单的、最深层次的、超出人类感官所及的宇宙的根本?欧几里德、牛顿等例子说明了什么问题?明确:从古希腊起,人们就有一个信念:世界是合理的、简单的,是可以用数学来描述的。这一信念促使数学追求最简单的、最深层次的、超出人类感官所及的宇宙的根本。欧几里德、牛顿等例子说明了科学经过了多次伟大的综合,而这种综合正是对数学进行研究时的那种化繁为简以求统一的过程。
(解说:设计这一问题,旨在让学生理解数学是在极抽象的形式下进行研究的,研究的过程是化繁为简以求统一。)
(6)“难道看不出这也是一种把生命归结为最简单成分的不同位置、不同形式、不同数量而成的数学味很重的结构吗?”“由一堆砖石固然可以建成宏伟的纪念碑,却也可以搭起一座马棚,它们的区别究竟何在?”结合上下文,说出这两句话的含义。
明确:第一句话作者借DNA的双螺旋结构一例说明人们在用数学去讨论物种的进化与竞争,讨论遗传的规律,并使人们认识到这种数学味很重的结构。这也恰恰证明了数学所追求的宇宙的根本——可以用数学来描述的、简单的、合理的世界。这种深层次的研究能破除迷信,体现了数学对人类生活的深刻影响。第二句话中,“它们的区别”也许就是“一堆砖石”“在数量上、形状上、结构上的差别”,这正是数学想解决的深刻的问题,这种研究是在极抽象的形式下进行的。
(解说:对这两句话的理解是这一课的难点,重在让学生理解数学在影响人类生活时所表现出来的深刻性和抽象性。)
(7)第4段作者举了哪些例子来说明数学的自我完善性?
明确:希腊人开辟了研究无理数系的道路,越来越多的“不可能性”的出现,体现了数学在不断反思、不断批判自己;理性思维感到有问题时就要变,体现了数学在不断否定自己;从怀疑部分到怀疑自己的整体,都体现了数学的自我完善性。
(解说:这一段的阅读比较简单,学生很容易理解数学的发展是一个不断自我完善的过程,因而只设计一个例子来说明问题。)
(8)在对全文进行总结时体现了作者怎样的思想?
明确:作者高度赞扬了数学在人类理性发展中的成就,它深刻地影响了人类精神生活,促进了人的思想解放。数学作为文化的一部分,其永恒的主题是“认识宇宙,也认识人类自己”。在探索中,数学的理性思维给人类的思想解放打开了道路。同时,作者站在文化盛衰、民族兴亡的高度阐明数学的重大意义。
(解说:设计这一问题,旨在让学生体会作者的思想认识,从而理解文章的内涵以及作者的主要思想。)
3.课堂训练。
结合课后练习四,让学生讲述自己了解的数学史上的小故事,结合自己学数学的体会谈谈对数学这门学科的认识。
(解说:这是一个比较开放的课堂训练,目的在于加深学生对数学的认识和理解。学生可以自由表述观点,不求统一。)
二、布置作业
课后阅读《数学与文化》绪言全篇,以加深对本课的理解。还可以阅读相关数学史的普及读物,提高自己对数学这门科学的认识。
方案二
一、导语设计(同前)
二、解题(同前)
三、研习课文
1.学生自读课文,找出难于理解的句子,提出相关问题。2.教师将学生提出的问题加以整合,分配给小组,以小组为单位讨论分析并归纳讨论结果。3.小组交流研究结果,其他小组补充、分享研究成果。
4.教师参与研究,提供研究线索,对小组研究作全面评价。(解说:这种设计充分考虑到学生主动学习的特点,有利于调动学生的思维,进而深入理解课文。学生可能会提出很多问题,包括“方案一”中的问题,教师可适时归纳整合这些问题,并要做到心中有数。有关问题的回答见“方案一”。)
四、布置作业(同前)
上一页 [1] [2] [3] [4] [5] [6] 下一页
|
来源:中国哲士网
学校教育教学 教学设计和案例教师备课考试,试卷试题 公务员考试,大学生就业
各类 《数学与文化》教案设计,教学资料
|
上一篇文章: 《熵:一种新的世界观(节选)》教案设计 |
下一篇文章: 《黄鹂》 |
|
|
|