解答:与原通用教材相比,实验教材在估算内容的编排上作了一些改变。首先,估算的内容大大增加,估算的地位大大提高。从许多角度来讲,估算都是非常重要的一种计算策略,我们可以将它作为解决实际问题的必要工具,也可以作为精确计算的重要基础,还可用于检验计算结果是否大致合理。例如,我们在购物时,经常只需用估算就可以解决问题。在精确计算325÷51时,一般都是先估算成300÷50进行试商。再如,对于34×6=2004的运算结果,运用估算就可以判断是否正确。其次,估算的教学重点由单纯的技巧性训练转变到估算意识的培养。过去,我们教给学生的是相对固定的估算方法,即先用“四舍五入”法求出算式中各项的近似值,再对近似值进行运算。实际上,在解决实际问题时,根据不同的需要,我们可以采取不同的估算策略,只要能达到解决问题的目的即可。用“四舍五入”法先求近似值再进行计算,固然是一种重要的估算方法,但不是唯一的方法。在估算的教学中,更重要的是使学生形成估算的意识,根据不同的问题情境选择适当的估算策略,并能加以解释。在平时的计算过程中也要引导学生自觉地运用估算方法对计算结果的合理性加以判断。应该说,培养估算意识不仅仅是某一节课的目标,而应该将估算教学融于日常的计算教学中。具体到第70页的例2,要使学生理解,在解决实际问题时,有时不需要精确计算,用估算就可以了。但也并不意味着只用估算就一定能解决问题,还要看所采用的估算策略对于具体的问题情境是否合适。估算仅仅是解决实际问题的步骤之一。如本例中,把29估成30,是估大了,说明即使有30个同学参加,才需要240元,因此带250元肯定是够了。如果把29改成32,把32估成30,估算方法相同,但却还没解决问题,还需要进一步考虑“少估了2个8,即16元,而240元与250元相差10元,因此钱不够”,这样才算是真正解决了问题。如果把29改成23,照样可以把23估成30,这里所用的方法就不是“四舍五入”法,但对于解决这个问题却是非常有效的。因此,脱离问题情境,孤立地说某种估算方法好或不好,是没有意义的。对于不同的问题情境,甚至同一问题情境,可以灵活采用多样的估算策略。八、教材第83页例5“0的乘法”与前后内容的教学难度不太一致,感觉深一脚浅一脚,是否可以放到二年级上册“表内乘法”一单元?在教学这一内容时是否必须按教材所提供的思路进行?解答:“0的乘法”一直以来都是编排在“多位数乘一位数”这一单元,这样做的主要目的是为后面学习“一个因数的中间或末尾有0的乘法”打下必要的知识基础,使前后知识的联系更紧密。当然,“0的乘法”的计算难度并不大,如果放到二年级上册学习,学生应该也是能够接受的。但是因为“表内乘法”主要学习1到9的乘法口诀,而0是没有乘法口诀的,如果生硬地编排在一起,也是不太妥当的。在编排上,教材采用的是顺向的思路,即通过情境列出7个0连加的算式,再根据乘法的意义改写成乘法算式7×0=0和0×7=0,再类推出其他的算式。教学时,也可以创造性地使用教材,先复习0的加法和减法,知道0和任何数相加仍得该数,任何数减去0仍得该数,然后直接从0的乘法算式7×0和0×7入手,让学生猜想这两个算式的得数,引导学生利用乘法的意义把这两个算式转化为相应的连加算式,求出得数。九、因为以后还要正式学习“分数的意义和性质”,应该如何把握好本册教材中“分数的初步认识”的教学要求?解答:本册教材主要是利用直观的方式,使学生通过折一折、涂一涂等动手操作的方式,初步理解分数的意义,掌握分数的大小比较方法和分数的简单加减法。由于是初步认识,本册教材涉及到的分数,分母都不超过10。而以后要学的“分数的意义和性质”,逐渐脱离了直观方式的支持,更多的是从数系发展的角度,认识分数产生的必要性,抽象地学习分数的一般意义和各种性质,并且,所有形式的分数都在研究范围之内。十、如何让学生理解“世界上每天都有人出生”等必然事件、不可能事件、可能事件?解答:在这里需要注意两个问题。第一,本单元所涉及到的“一定”“不可能”“可能”是概率论中的术语,与生活用语完全不同,是指当我们多次观察自然现象和社会现象后,会发现在一定的条件下,许多事情必然会发生,许多事情必然不会发生,还有许多事情是可能发生的。因此,我们讨论的事件一般指的是客观事件,同时,又是在我们经验范围内发生的事件。所以,在教学时应避免举出“我一定会好好学习的”的例子,这里的“一定”是一种生活用语,带有强烈的主观色彩,与概率论中“概率等于1”的含义截然不同。对于学生提出的超出人类认识经验的说法,如“如果太阳系爆炸了,‘地球每天都在转动’这句话就不是一定的了。”教师也应正确地加以引导。第二,如果有些事件超出了学生的认识范围,教师应提供一些证据帮助学生理解。例如,学生无法理解“世界上每天都有人出生”,教师可以通过本地区或全国、全世界每天有多少婴儿出生的数据使学生认识到世界上每天一定有人出生,如“中国平均每4.15秒就出生一个孩子,中国每天出生的人口大约是2.08万。” 十一、教材第108页例3中的实验结果如果与理论的发生矛盾怎么处理?解答:我们都知道,如果一个盒子里有4个红棋子和1个蓝棋子,随机地从盒子里摸出一个棋子,摸出红棋子和蓝棋子的可能性都是存在的,如果把以上过程重复若干次,会发现在一般情况下,摸出红棋子的次数比摸出蓝棋子的次数多,因此,我们说摸出红棋子的可能性更大。这种可能性的大小都是一种理论上的值,与实验的结果有时会不一致,因为在实验中过程,有时小概率事件也有可能会发生,虽然发生的可能性比较小。例如,在抽奖活动中,中奖的可能性比较小,不中奖的可能性比较大,但人们并不会因为不中奖的可能性很大就不去抽奖了,而是满心期待小概率事件(中奖)的发生。但是在小学阶段,学生对于抽象的、理论的可能性概念理解起来有一定的困难,只能借助实验的结果来加以论证。虽然在一般情况下,不会出现小概率事件,但如果真的出现了,我们可以用以下的方式来加以修正。例如,在实验之前,先不限定重复的次数,如果个别小组出现了这样的小概率事件,第一种方法是继续增加实验的次数,因为从理论上说,实验的次数增加到无穷大,摸出某种颜色棋子的次数所占的比就是摸出该种颜色棋子的概率。第二种方法是把全班所有小组的数据都整合起来,实际上原理与第一种方法也是一样的,都是增加实验的次数。十二、数学广角的“排列组合”问题与二年级上册的相关内容如何区分教学层次?解答:这两册教材中都编入了“排列组合”的内容,但教学要求是有所不同的。二年级只是让学生通过动手操作的方式让学生排一排,初步感受排列组合的思想和方法,所用的材料数量也比较少,例如,用3张数字卡片能摆出多少个两位数,2件衣服和2条裤子有多少种搭配。而本册的教学重点则是让学生用不同的方式(如学具操作,画简图、文字形式、字母形式)把排列组合的结果罗列出来,使学生学会用更简洁、更抽象的方式来表达排列组合的方法。更为重要的是通过以上过程,引导学生思考如何搭配才能不重复、不遗漏地把所有结果都呈现出来,发展学生有序思考的意识和能力。所用的材料数量也有所增加,如,3件衣服和2条裤子有多少种搭配,用3张数字卡片能摆出多少个三位数。当然,如果教学实践证明分为这样两个层次进行教学没有太大必要,在下一轮教材修订时我们也可以考虑将这两个层次进行整合。
人教版课程标准实验教科书数学三年级下册教学问题研讨一、有关第一单元“位置与方向”的教学问题。 1.教材中为什么要安排这一内容? 《数学课程标准》在第一学段的“空间与图形”内容标准中规定,“在东、南、西、北和东北、西北、东南、西南中,给定一个方向(东、南、西或北)辨认其余七个方向,并能用这些词语描绘物体所在的方向;会看简单的线路图”。我们根据《数学课程标准》的规定在本册教材中安排了“位置与方向”这个单元。对三年级的学生来说,东、南、西、北等方位概念是比较抽象的,学生需要大量的感性支柱和丰富的表象积累。因此,教材在这部分内容编排上有以下几点考虑。 ⑴ 充分利用学生已有的上、下、前、后、左、右的方位知识设计教学情境,帮助学生掌握本单元内容。因为有研究证明儿童只有在牢固掌握了上、下、前、后、左、右这几个基本空间方位之后,才能够掌握按水平方向分出的东、南、西、北等方位概念。 ⑵ 依据学生的年龄特点和生活经验,创设了许多既符合这一阶段儿童认知特点又便于操作的活动情境,使学生一方面亲身体验方位的知识,另一面又体会到方位知识与日常生活的密切联系。例如,教科书中设计了让学生到操场上学习辨认东、南、西、北等八个方向的活动情境,让学生在熟悉的环境中,在观察、描述和交流的过程中体验方位的知识。 2.“位置与方向”比较脱离学生的生活经验,不好上,如何更好地进行教学? 这些方位概念对三年级的学生来说,确实比较抽象。而且由于地域的因素,有些学生在生活中也没有相应的经验支撑。因此,在教学时要以学生已有的知识和生活经验为基础,创设大量的活动情境,充分调动学生的积极性,让所有的学生都参与到活动中来。使学生在观察、操作、想像、描述、表示和交流等数学活动中,丰富对方位知识的体验,使学生获得大量的感性支柱和丰富的表象积累。例如,在认识东、南、西、北四个方向时,就可以把学生带到操场上,让他们面向太阳升起的方向,确定东方,再与前、后、左、右这几个基本空间方位相联系:明确后面是西,左手指向北,右手指向南,认识四个方向。通过这样一个简单的操作活动,就让所有的学生在参与活动的过程中,利用已有的基本空间方位知识(前、后、左、右)为基础,与新知识(东、南、西、北四个方向)建立了联系,获得了对新知识的理解。二、第二单元“除数是一位数的除法”,例题、习题的编排上学生接受起来吃力。如,例3和例2跨度太大,学生较难适应。 1.教材为什么改变了原来的编排,减少了例题?《数学课程标准》在第一学段“数与代数”内容标准中规定,“能计算三位数除以一位数的除法”。在《九年义务教育全日制小学数学教学大纲(试用修订版)》(以下简称《教学大纲》)中要求学生“掌握一位数乘、除多位数的笔算法则,能够比较熟练地计算”。可见《数学课程标准》与《教学大纲》相比,降低了笔算的复杂性与熟练程度。* 我们在整套教材“计算教学内容”的编排上注意体现《数学课程标准》的基本理念,注重培养学生灵活的计算能力,发展学生的数感。在本册教材中“除数是一位数的除法”这个单元里,精心设计教学顺序,加大教学的步子,从原通用教材的17课时减少为13课时,例题也从16个减少为9个,留给学生更大的探索和思考空间;让学生在自主探索中获得对笔算过程与算理的理解;加强估算。 2.例3和例2跨度较大,如何进行教学?例3从整理照片为素材引出除法算式238÷6,然后呈现了两个学生估算和笔算的过程,一方面注意培养学生的估算意识、另一方面体现估算、笔算各自不同的特点。这个例题里面难点比较集中,估算与笔算同时出现,要进行比较;被除数的最高位不够商1;除不尽,有余数。在教学例3时,可先放手让学生自主探索,如果大多数学生都有困难,教师可增加“一位数除三位数(商是两位数能整除)”的题目,在学生突破了“被除数的最高位不够商1”这个笔算难点之后,再呈现例3。三、有关第三单元“统计”的问题 1.为什么从一年级下册开始,几乎每一册书中都安排统计的内容?《数学课程标准》在第一学段“统计与概率”内容标准中规定“在本学段中,学生将对数据统计过程有所体验,学习一些简单的收集、整理和描述数据的方法,能根据统计结果回答一些简单的问题”。而要使学生形成统计观念,最有效的方法是让他们真正投入到统计的全过程。**因此,我们根据《数学课程标准》的精神,从一年级开始安排统计知识的教学,以后的各年级都联系学生的生活实际安排了统计的教学内容。为学生提供了大量日常生活中各种各样的例子,让学生在经历收集、整理、描述、分析数据的过程中加深对有关概念、以及统计的意义和作用的理解,逐步形成统计观念。
上一页 [1] [2] [3] [4] [5] 下一页
|