九年级数学家庭作业 姓名 1、如图,设M,N分别是直角梯形ABCD两腰AD,CB的中点,DE上AB于点E,将△ADE沿DE翻折,M与N恰好重合,则AE:BE等于( ) A.2:1 B.1:2 C.3:2 D.2:3 2、小宇同学在一次手工制作活动中,先把一张矩形纸片按图1的方式进行折叠,使折痕的左侧部分比右侧部分短1cm;展开后按图2的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长1cm,再展开后,在纸上形成的两条折痕之间的距离是( )
A.0.5cm B.1cm C.1.5cm D.2cm 3、如图,若将四根木条钉成的矩形木框变为平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形的一个最小内角的值等于 。 4、矩形ABCD中, ,将角D与角C分别沿过A和B的直线AE、BF向内折叠,使点D、C重合于点G,且 ,则 .
5、已知平行四边形 , .点 为线段 上一点(端点 除外),连结 ,连结 ,并延长 交 的延长线于点 ,连结 . (1)当 为 的中点时,求证 与 的面积相等; (2)当 为 上任意一点时, 与 的面积还相等吗?说明理由.
6、在一次数学实践探究活动中,小强用两条直线把平行四边形ABCD分割成四个部分,使含有一组对顶角的两个图形全等; (1) 根据小强的分割方法,你认为把平行四边形分割成满足以上全等关系的直线有 组; (2)请在图中的三个平行四边形中画出满足小强分割方法的直线;
(3)由上述实验操作过程,你发现所画的两条直线有什么规律?
7、如图:把一个矩形如图折叠,使顶点B和D重合,折痕为EF。(1)找出全等三角形;(2)△DEF是什么三角形,并证明;(3)连接BE,判断四边形BEDF是什么特殊四边形,BD与EF有什么关系?并证明。
8、如图,在Rt△ABC中,∠C=90°,AC=12,BC=16,动点P从点A出发沿AC边向点C以每秒3个单位长的速度运动,动点Q从点C出发沿CB边向点B以每秒4个单位长的速度运动.P,Q分别从点A,C同时出发,当其中一点到达端点时,另一点也随之停止运动.在运动过程中,△PCQ关于直线PQ对称的图形是△PDQ.设运动时间为t(秒).(1)设四边形PCQD的面积为y,求y与t的函数关系式;(2)t为何值时,四边形PQBA是梯形?(3)是否存在时刻t,使得PD∥AB?若存在,求出t的值;若不存在,请说明理由;(4)通过观察、画图或折纸等方法,猜想是否存在时刻t,使得PD⊥AB?若存在,请估计t的值在括号中的哪个时间段内(0≤t≤1;1<t≤2;2<t≤3;3<t≤4);若不存在,请简要说明理由
|