6.例4及相应的“做一做”。(认识东北、东南、西北、西南四个方向,能够用给定的一个方向(东、南、西或北)辨认其余的七个方向,并能用这些词语描述物体所在的方向。) ⑴例4。教科书呈现了学生在操场上辨认东北、东南、西北、西南等四个方向的活动情境。目的是在学生学会辨认东、南、西、北这四个方向的基础上,进一步学习辨认东北、东南、西北、西南等四个方向。教学时,可以分以下几步进行:首先,在学生已有的知识基础上引出新知识的学习。把学生带到操场上,让学生说一说,校园内的主要建筑物教学楼、图书馆、大门和体育馆分别在操场的什么方向,复习已经学过的东、南、西、北四个方向。接着,再组织学生讨论多功能厅和食堂分别在操场的什么方向。在学生思考之后,可提供指南针帮助辨认东北、东南、西北、西南这四个方向。最后,结合学校的具体情况,让学生说出校园内的这四个方向各有什么建筑物。还可以让学生辨认教室中的八个方向,使学生进一步熟悉这四个方向,并能用这些词语描述建筑物所在的位置。 ⑵例4的“做一做”。教科书呈现了学生小组讨论交流“方位知识在日常生活中的应用”的活动情境。目的是使学生进一步体会数学与日常生活的密切联系,并培养学生应用数学的意识。 7.例5及相应的“做一做”。(会看简单的路线图(八个方向),并能描述行走的路线。) ⑴例5。教科书呈现学生观察“动物园导游图”的情境,使学生能够用给定的一个方向辨认其余七个方向,能用这些词语描述各场馆所在的位置,并能描述行走的路线。教学时,既可以利用此图也可以让本班同学进行实地演习。不论采用何种方式,都可以先给定一个方向,让学生辨认其余七个方向,说一说动物园内各场馆的位置。再让学生提出不同的问题进行讨论和交流,说出从出发地到目的地行走的方向和经过的地方。 ⑵例5的“做一做”。教科书呈现了1路公共汽车的行车路线图,使学生会看简单的路线图(八个方向),并体会到生活中处处有数学。教学时,可以先让学生说一说从火车站到动物园的行车路线,再说一说从动物园到火车站的行车路线,使学生体会两者之间的相同和不同。然后可以让学生在小组内说一说从任意一站出发到另外一站的行车路线。教师也可以利用学生熟悉的实际生活中的公共汽车行车路线图进行教学,以激发学生学习的兴趣。 8.有关练习二中习题的教材说明和教学建议。第1题、第2题和第5题都是实际应用的题目,目的是让学生把所学的有关八个方位的知识与生活实际相结合,体会数学与日常生活的联系,培养学生应用数学的意识。练习第1题时,可以让学生先调查自己家相对于学校的位置,再在课堂上让学生标出来。第2题可以让学生独立完成,再在小组内交流。第5题可以让学生在小组内提出不同的问题进行讨论和交流,也可以让学生画出自己上学的路线图,标出重要的建筑物,然后在全班展示交流。第4题,是让学生在地图上辨认方向的练习。通过呈现我国几处“世界文化和自然遗产”的分布图,帮助学生巩固用给定的一个方向辨认其余七个方向的知识,同时培养学生保护人类共有的自然和文化遗产的意识。教师可以先让学生观察图,找到自己家乡的位置。再在小组内分别说一说这些“世界文化和自然遗产”相对于自己家乡的地理位置。五、教学建议注意让学生在活动中体验方位的知识。对三年级的学生来说,东、南、西、北等方位概念的掌握还是比较抽象的,学生需要大量的感性支柱和丰富的表象积累。因此,在教学时要以学生已有的知识和生活经验为基础,创设大量的活动情境,充分调动学生的积极性,让所有的学生都参与到活动中来。鼓励学生自主探索,独立思考,敢于发表自己的意见,并能与同伴交流自己的想法。使学生在观察、操作、想像、描述、表示和交流等数学活动中,丰富对方位知识的体验。第二单元 除数是一位数的除法一、教学目标 1.使学生会口算一位数除商是整十、整百、整千的数,一位数除几百几十(或几千几百),。 2.使学生经历一位数除多位数的笔算过程,掌握一般的笔算方法,会用乘法验算除法。 3.使学生能在具体的情境中进行除法估算,会表达估算的思路,形成估算的习惯。 4.使学生感受数学与生活的联系,能够运用所学知识解决日常生活中的简单问题。二、教学内容 1.本套教材整数除法的教学内容安排在三个年段进行,具体编排如下表:
年 段 |
内 容 |
二年级下学期 |
除法的初步认识,用2~6的乘法口诀求商,用7~9的乘法口诀求商。 |
三年级下学期 |
除数是一位数的除法。 |
四年级上学期 |
除数是两位数的除法。 |
本单元有着承上启下的作用:(1)它是在表内乘、除法,一位数乘多位数,的基础上进行教学的。(2)它为学生掌握除数是两位数的除法,学习除数是多位数的除法奠定了扎实的知识和思维基础。 2.本单元的主要内容有:口算除法、笔算除法。编排结构如下表:
|
课题 |
内 容 |
口算除法 |
例1 |
用一位数除商是整十、整百、整千的数用一位数除几百几十或几千几百 |
例2 |
除法估算 |
基本的笔算除法 |
例1 |
一位数除两位数(被除数各位上的数都能被整除) |
例2 |
一位数除两位数(被除数十位上的数不能被整除) |
例3 |
一位数除三位数(商是两位数且有余数)除法估算 |
除法的验算 |
例4 |
用乘法验算除法 |
有关0的除法 |
例5 |
有关0的除法 |
例6 |
商的中间或末尾有0(1)(一位数除三位数、商三位数) |
例7 |
商的中间或末尾有0(2)(一位数除三位数、商三位三数) |
3.义务教材安排在六年制五册第二单元。
|
课题 |
内 容 |
口算除法 |
例1 |
用一位数除商是整十、整百、整千的数 |
例2 |
一位数除两位数(被除数各位上的数都能被整除) |
例3 |
一位数除几百几十(被除数各位上的数都能被整除) |
例4 |
一位数除几百几十(被除数百位上的数不能被整除) |
用一位数除商两位数 |
例1 |
一位数除两位数(被除数各位上的数都能被整除) |
例2 |
一位数除两位数(被除数十位上的数不能被整除) |
例3 |
一位数除三位数(商是两位数能整除) |
例4 |
一位数除三位数(商是两位数且有余数) |
用一位数除商三、四位数 |
例5 |
用一位数除商三、四位数 |
除法的验算 |
例6 |
用乘法验算除法(无余数) |
例7 |
用乘法验算除法(有余数) |
有关0的除法 |
例8 |
有关0的除法 |
例9 |
商中间有0(被除数中间有0) |
例10 |
商中间有0(被除数中间无0) |
例11 |
商末尾有0(被除数末尾有0) |
例12 |
商末尾有0(被除数末尾无0,且有余数) |
4.变化。 ⑴根据课标的要求删去了用一位数除商四位数。 ⑵口算除法缩减为1个例题下的三个小题,并且都是可以归结为表内除法进行计算的,将“24÷2”这种类型后称至第二学段四年级上册“除数是两位数的除法”中。并且增加了探索性。 ⑶增加了估算的内容。如例3。 ⑷除法的验算减化为一个例题。 ⑸有关0的除法。 ①“0”的除法增加了情境。 ②将义务教材的例9和例11合并为现在的例6,将义务教材的例10和例12合并为现在的例7。这样按被除数的特点来进行分类,层次更加清楚。(例6,被除数的中间和末尾有0,商的中间和末尾也有0;例7是被除数的中间和末尾没有0,商的中间和末尾有0)。三、编排特点 1.遵循学生学习除法计算的认知规律安排教学内容。本套教材涉及的计算内容,不论是加减法,还是乘除法,一般按照“先口算──再估算──再笔算”的顺序进行编排。
上一页 [1] [2] [3] [4] [5] [6] [7] 下一页
|