4、在数轴上认识正负数。
师:淘气有问题要请教你们了。他把温度计横着来看,以0℃为界,哪边的温度可以用正数表示?哪边的温度可以用负数表示呢?
生:0右边的温度可以用正数表示,0左边的温度可以用负数表示。
师:让温度计继续变化,它就变成了以后我们要深入学习的数轴了。(指数轴)这是+1,这是几呢?
生:+2。
师:这是几?
生:+3。
师:-1在哪?
生:在数轴上指出相应的点。
师:-2在哪?
生:在数轴上指出相应的点。
师:-3在哪?
生:在数轴上指出相应的点。
师:+5、-5分别在哪?
生:指出+5的相应位置(数轴上没标出-5的点,学生疑惑)。
师:难道就没有-5了?
生:有。在这(指出-5的大致位置)。
师:负数多少个?
生:无数个。
师:正数多少个?
生:无数个。
【设计意图:从现场教学来看,以温度计为基础认识数轴很“妙”。学生真正感受到0是分界点,再由课件上显示出的变化使学生真正感受到正负数有无限个。】
5、分类,界定正负数和零。
师:把-155米、+8844.43米、5℃、-5℃、+2千克、-4千克的单位名称去掉,这些数怎么分类吗?
生:-155、-5、-4是负数类; +8844.43、+5、+2是正数类。
师:(师板书:正数负数)-9、+2.3、0、99、0、-129、0分别是正数还是负数?请你把它们贴到黑板的相应位置(-9、+2.3、0、99、0、-129、0分别写在纸上,课前发给了7位学生)。你若认为说不清楚的,就贴在说不清的下面(是贴上写有说不清的纸条)。
(学生活动后把写有-9、-129的纸条贴到负数的位置,把写有+2.3、99的纸条贴到正数的位置,三个人都把写有0的纸条贴到了说不清的位置。)
生1:(急切地说)0可以是正数也可以是负数。
生2:0即不是正数也不是负数。
师:(顺势)在黑板上点上一点,这一点表示0的位置,这一点不包括正数和负数,你说的是这个意思吗?
生:是。
生:0是分界点,它比负数大但比正数小。
师:(顺势)把负数、0、正数用小于号连接。你能结合温度计或海拔高度说一说你的理由吗?
生:温度计上0以上是0上的温度,0以下是零下的温度,0即不是零上的也不是零下的,所以0单独是一类。
生:海平面看作0,海平面以上是正数,海平面以下是负数,0是标准,所以它单独是一类。
师:你们答得太精彩了。
【设计意图:把数量去掉单位名称并分类是本节课的难点,所以设计了这个分类的活动。从现场教学来看,对于0的认识这个难点抓得很准,而且用这种形式处理也很好地突破了难点。尤其让学生结合温度计和海拔高度来说一说对0的认识,使教学落在了实处而不是“虚晃一枪”。】
(三)借助实例,解释应用。
其实在生活中经常用到负数。
1、教师展示一组生活中的正负数的例题,让学生重点讨论:
电梯中的正、负数。
我们来看看电梯按键,读出上面的负数。-1表示什么意思?1呢?那你知道-2表示什么意思吗?2呢?
海拔高度中的正、负数。
不仅电梯中有正数、负数,生活中海拔高度也是用正数、负数来表示的。
请看图,这是海平面,从图上你了解到什么?
出示题目,学生回答。
小结:在刚才的学习中,上车15人用+15表示,下车8人用-8表示;赚5000元用+5000表示,亏1000元用-1000表示;地面以上1层用1表示,地面以下1层用-1表示,那用正数、负数表示的量具有怎样的关系?
强调:不错,在生活中我们经常用正数、负数表示两个相反意义的量。
2、请你回忆一下,生活中你曾经在哪见到过负数?结合学生的举例,进行解释说明。
3、看书质疑。
(四)巩固练习,拓展提高。
1、说一说下列负数表示的意思。
小明向南行
20米记作+20米,那么-5米表示________________________。
一个班级进行选举,投赞成票的有20人,记作+20人,那么-12人表示___________________。
如果体重增加3千克记作+3千克,那么-2千克表示_____________________。
2、我们还可以用正负数记录收支情况,请做第87页1题。
如果-60元表示支出60元,那么收入100元记作________元。
如果考试成绩提高35分记作+35分,那么考试成绩下降7分记作________分。
如果向东走10KM记作+10KM,那么向西走8KM记作________KM。
上一页 [1] [2] [3] [4] 下一页
|