公元1896年
发现铀的放射性(法国 昂·贝克勒尔)。
发现磁场能使光谱线分裂的效应(荷兰 塞曼)。
发展物质的带电粒子理论,假定原子中有电子在静态“以太”中运动,用以解释塞曼效应(荷兰 罗伦兹)。
1894—1896年,用洛奇接受器,首次应用天线,实现了三百码的无线电传播(俄国 波波夫)。
发现过饱和汽体能在离子上凝成液滴,据此发明云雾室装置,可观察到电离辐射的径迹(英国 查·威尔逊)。
公元1897年
制成高压缩型自动点火内燃机,使用低级油代替汽油,成为工业上主要动力机(德国 狄塞耳)。
发现电子;利用阴极射线在静电场中的偏转,测定电子的质量和电荷的比值(英国 汤姆逊)。
创制用荧光屏观测电子及用电场控制电子束的阴极射线管,后人在这个基础上于二十世纪三十年代发展出阴极射线示波器,在近代科学技术上有广泛应用(德国 卡·布朗)。
公元1898年
发明用磁性钢丝记录电讯号的装置(丹麦 鲍尔森)。
公元1899年
发现 射线和 射线(英籍新西兰人 厄·卢瑟福)。
实验证实电磁辐射的压强(俄国 彼·列别捷夫)。
用经典统计力学推出空腔辐射能量密度的频率分布正比于频率的平方,因而在短波极限发散,这一困难史称“紫外灾难”。进一步提出大气分子散射光的定律,以解释天空颜色 (英国 瑞利)。
公元1900年
德国科学家普朗克,发现电磁辐射的经验定律,为求“绝对熵”提出能量量子化假说,揭示了辐射定律,是量子论的开始。
英国科学家拉摩,提出物质中电子的以太结构理论,即原子中运动电子在磁场中的进动理论。
德国科学家德鲁德,提出金属的电和热性质的自由电子理论。
法国科学家彭加勒,提出不可能观测到绝对运动的观点,相信“以太”不存在,物理现象的定律对于相对做匀速运动的各观察者来说必然是一样的。根据电磁波理论,暗示电磁场能量可能具有质量,其密度数值应为能量密度除以光速的平方,并指出电磁振子定向发射电磁波时应受到反击。
英籍新西兰科学家卢瑟福,发现第一种放射性气体——钍射气。
德国科学家林纳,用实验证明金属在紫外光照射下发射电子,揭示了霍尔瓦希斯效应。
法国科学家维拉德,发现γ射线。
公元1901年
瑞典皇家科学院诺贝尔奖金委员会设立诺贝尔奖。
美国科学家吉布斯,提出经典统计力学基础的系统理论。
德国科学家考夫曼,发现β射线的质量随速度的增加而增加,试图据此区分电子的固有质量和速度改变的电磁质量。