1、一个长方形,剪掉一个角,还剩几个角?
答:可能还剩3个角,也可能是5个角。
2、一个平行四边形相邻两边的和是36厘米,这个平行四边形的周长是多少厘米?
36×2=72(厘米)
答:这个平行四边形的周长是72厘米。
3、小华看一本故事书,平均每天看39页,4天看完。若前两天每天看25页,后两天平均每天看多少页?
(39×4-25×2)÷2
=(156-50)÷2
=106÷2
=53(页)
答:后两天平均每天看53页。
七、画出一个轴对称图形。(提示:可以画长方形、正方形或等腰梯形)
八、把符合要求的图形序号填在括号里。 A、正方形 B、长方形 C、平行四边形 D、梯形 1.两组对边分别平行的四边形,有四个直角。(A、B、C) 2.只有一组对边平行的四边形。(D) 3.两组对边形分别平行,没有直角(C)
学数学中的行程问题
【基本公式】
基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间
关键问题:确定行程过程中的位置
相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)
追击问题:追击时间=路程差÷速度差(写出其他公式)
流水问题:顺水行程=(船速+水速)×顺水时间 逆水行程=(船速-水速)×逆水时间
顺水速度=船速+水速 逆水速度=船速-水速
静水速度=(顺水速度+逆水速度)÷2 水 速=(顺水速度-逆水速度)÷2
流水问题:关键是确定物体所运动的速度,参照以上公式。
过桥问题:关键是确定物体所运动的路程,参照以上公式。
【一般行程问题公式】
平均速度×时间=路程;
路程÷时间=平均速度;
路程÷平均速度=时间。
【反向行程问题公式】
反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。这两种题,都可用下面的公式解答:
(速度和)×相遇(离)时间=相遇(离)路程;
相遇(离)路程÷(速度和)=相遇(离)时间;
相遇(离)路程÷相遇(离)时间=速度和。
【同向行程问题公式】
追及(拉开)路程÷(速度差)=追及(拉开)时间;
追及(拉开)路程÷追及(拉开)时间=速度差;
(速度差)×追及(拉开)时间=追及(拉开)路程。
【列车过桥问题公式】
(桥长+列车长)÷速度=过桥时间;
(桥长+列车长)÷过桥时间=速度;
速度×过桥时间=桥、车长度之和。
【行船问题公式】
(1)一般公式:
静水速度(船速)+水流速度(水速)=顺水速度;
船速-水速=逆水速度;
(顺水速度+逆水速度)÷2=船速;
(顺水速度-逆水速度)÷2=水速。
(2)两船相向航行的公式:
甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度
(3)两船同向航行的公式:
后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。
(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。
【例题精讲】
例1、小王骑车到城里开会,以每小时12千米的速度行驶,2小时可以到达。车行了15分钟后,发现忘记带文件,以原速返回原地,这时他每小时行多少千米才能按时到达?
解答:
要求小王返回原地后到城里的速度,就必须知道从家到城里的路程和剩下的时间。根据题意,这两个条件都可以求出。
15分钟=小时
从家到城里的路程:12×2=24(千米)
返回后还剩的时间:2-×2=1(小时)
返回后去城里的速度:24÷1=16(千米/时)
答:他每小时行16千米才能按时到达。
2.相遇问题
距离=速度和×相遇时间;
相遇时间=距离÷速度和;
速度和=距离÷相遇时间。
例2、如图,从A到B是1千米下坡路,从B到C是3千米平路,从C到D是2.5千米上坡路.小张和小王步行,下坡的速度都是6千米/小时,平路速度都是4千米/小时,上坡速度都是2千米/小时。
问:(1)小张和小王分别从A, D同时出发,相向而行,问多少时间后他们相遇?
(2)相遇后,两人继续向前走,当某一个人达到终点时,另一人离终点还有多少千米?
解答:
(1)小张从 A到 B需要 1÷6×60= 10(分钟);
小王从 D到 C也是下坡,需要 2.5÷6×60= 25(分钟);
当小王到达 C点时,小张已在平路上走了 25-10=15(分钟),走了4×=1(千米)。
因此在 B与 C之间平路上留下 3-1= 2(千米)
由小张和小王共同相向而行,直到相遇,所需时间是:2 ÷(4+ 4)×60= 15(分钟)。
从出发到相遇的时间是25+15= 40(分钟)。
(2)相遇后,小王再走30分钟平路,到达B点,从B点到 A点需要走 1÷2×60=30分钟,即他再走 60分钟到达终点。
小张走15分钟平路到达D点,45分钟可走:2×=1.5(千米)
小张离终点还有2.5-1.5=1(千米)
答:40分钟后小张和小王相遇。小王到达终点时,小张离终点还有1千米。
3.追及问题
追及距离=速度差×追及时间;
追及时间=追及距离÷速度差;
速度差=追及距离÷追及时间。
例3、小轿车的速度比面包车速度每小时快6千米,小轿车和面包车同时从学校开出,沿着同一路线行驶,小轿车比面包车早10分钟到达城门,当面包车到达城门时,小轿车已离城门9千米,问学校到城门的距离是多少千米?
上一页 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] 下一页
|