小学数学应用题综合训练(02) 65. 师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件? 66. 一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的0%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的. 67. 一部书稿,甲单独打字要14小时完成,乙单独打字要20小时完成.如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时.两人如此交替工作.那么打完这部书稿时,甲乙两人共用多少小时? 68. 黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多? 69. 一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米? 70. 甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨? 71. 甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙丙三数之和是几? 72. 一辆车从甲地开往乙地.如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少千米? 73. 某校参加军训队列表演比赛,组织一个方阵队伍.如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加.那么组成这个方阵的人数应为几人? 74. 甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的.这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个? 75. 圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金属线还差0.4米,如果再截取2根长度为A的金属线则还差2米,长度为A的等于几米? 76. 某公司要往工地运送甲、乙两种建筑材料.甲种建筑材料每件重700千克,共有120件,乙种建筑材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次? 77. 从王力家到学校的路程比到体育馆的路程长1/4,一天王力在体育馆看完球赛后用17分钟的时间走到家,稍稍休息后,他又用了25分钟走到学校,其速度比从体育馆回来时每分钟慢15米,王力家到学校的距离是多少米? 78. 师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5.两人合作6天,完成全部工程的2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,如果这项工程由师傅一人做,几天完成? 79. 六年级五个班的同学共植树100棵.已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班.又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵? 80. 甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米.乙总共跑了多少千米? 81. 有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米.容器A中装满水,容器B是空的,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7/8还低2厘米.容器的高度是多少厘米? 82. 有104吨的货物,用载重为9吨的汽车运送.已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成. 83. 师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件? 84. 奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米.去时用了4天,回来时用了3天,问学校距离百花山多少千米? 小学数学应用题综合训练(04) 85. 某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费.每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电? 86. 王师傅计划用2小时加工一批零件,当还剩160个零件时,机器出现故障,效率比原来降低1/5,结果比原计划推迟20分钟完成任务,这批零件有多少个? 87. 妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张1.20元.用这些钱买甲种卡要比买乙种卡多8张,买乙种卡要比买丙种卡多买6张.妈妈给了红红多少钱?乙种卡每张多少钱? 88. 一位老人有五个儿子和三间房子,临终前立下遗嘱,将三间房子分给三个儿子各一间.作为补偿,分到房子的三个儿子每人拿出1200元,平分给没分到房子的两个儿子.大家都说这样的分配公平合理,那么每间房子的价值是多少元? 89. 小明和小燕的画册都不足20本,如果小明给小燕A本,则小明的画册就是小燕的2倍;如果小燕给小明A本,则小明的画册就是小燕的3倍.原来小明和小燕各有多少本画册? 90. 有红、黄、白三种球共160个.如果取出红球的1/3,黄球的1/4,白球的1/5,则还剩120个;如果取出红球的1/5,黄球的1/4,白球的1/3,则剩116个,问(1)原有黄球几个?(2)原有红球、白球各几个? 91. 爸爸、哥哥、妹妹三人现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁.当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁.现在三人的年龄各是多少岁? 92. B在A,C两地之间.甲从B地到A地去送信,出发10分钟后,乙从B地出发去送另一封信.乙出发后10分钟,丙发现甲乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间? 93. 甲、乙两个车间共有94个工人,每天共加工1998竹椅.由于设备和技术的不同,甲车间平均每个工人每天只能生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅.甲车间每天竹椅产量比乙车间多几把? 94. 甲放学回家需走10分钟,乙放学回家需走14分钟.已知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多走12米,那么乙回家的路程是几米? 小学数学应用题综合训练(05) 95. 某商品每件成本72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提高到原来的2.5倍,照这样计算,每天的利润比原来增加几元? 96. 甲、乙两列火车的速度比是5:4.乙车先发,从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车往B站,两列火车相遇的地方离A,B两站距离的比是3:4,那么A,B两站之间的距离为多少千米? 97. 大、小猴子共35只,它们一起去采摘水蜜桃.猴王不在的时候,一只大猴子一小时可采摘15千克,一只小猴子一小时可采摘11千克.猴王在场监督的时候,每只猴子不论大小每小时都可以采摘12千克.一天,采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共采摘4400千克水蜜桃.在这个猴群中,共有小猴子几只? 98. 某次数学竞赛设一、二等奖.已知(1)甲、乙两校获奖的人数比为6:5.(2)甲、乙来年感校获二等奖的人数总和占两校获奖人数总和的60%.(3)甲、乙两校获二等奖的人数之比为5:6.问甲校获二等奖的人数占该校获奖总人数的百分数是几? 99. 已知小明与小强步行的速度比是2:3,小强与小刚步行的速度比是4:5.已知小刚10分钟比小明多走420米,那么小明在20分钟里比小强少走几米? 100. 加工一批零件,原计划每天加工15个,若干天可以完成.当完成加工任务的3/5时,采用新技术,效率提高20%.结果,完成任务的时间提前10天,这批零件共有几个? 其他类似问题
问题1:六年级上册数学计算题200道 应用题100道[数学科目]
计算题 列式计算: 7.91×3+3×2.19 8.67-5.8 +1.33 853-147-253 54×23+77×54 420÷28 18÷(24÷4) 10.5-1.5-3.5 145+78+255 125×32 656-164-36 6.84+0.6+1.4+5.16 54.25-2.14-7.86 4.8+0.2-4.8+0.2 (148-111÷37)×9 127+885÷59×7 2.45+3.8+0.55 (2296+7344÷36)×2.4 1÷0.45÷0.9-7/8 0.36×[(2+3.8)÷0.04] 68×35-408÷24 47.5-(0.6+6.4÷0.32) 44.08-44.08÷5.8 (309×17+375)÷84 3.35×6.4×2+6.7×3.6 3060÷15-2.5×1.04 75 ×23 +1415 ÷ 19 0.16+4÷(38 -18 ) 35 ÷ [(15 +13 )÷29 ] 6÷35 -35 ÷6 37 -[ 195 -(145 +47 )] 35 ÷ [(15 +13 )÷29 ] (10000-0.16×1900)÷96 38 ×[89 ÷( 56 -34 )] 168.1÷(4.3×2-0.4) 306×15 –2080 100-91 ÷13 7.73-2.3÷0.5×0.8 1025-4050÷54 498+9870÷35 100-19)÷(1.63+1.07) 8.82×15—100 (20.2×0.4+7.88)÷4.2 420.5 - 294÷2.8×2. 5400-2940÷28×27 21.6-0.8×4÷0.8 (9+92+93)×0.01 13.5×[1.5×(1.07+1.93)] 4.2÷1.5-0.36 1498+1068÷89 0.54×1.75+8.25×0.54 六年级上册数学计算题200道 应用题100道 要带答案的 78 ×〔67 -(121 +37 ) (80-9.8)×0.6-2.1 简算: 45.55-(6.82+15.55) 34.52-17.87-12.23 27.38-5.34+2.62-4.66 6.43-(1.4-0.57) 23.75-8.64-3.46 21.63-(8.5+9.63) 17.83-9.5-7.83-0.5 5.38+88.2-2.38+1.8 7.5-2.45+7.5+2.45 0.9+0.99+0.999 5.09-(0.09+1.23) 9.36-(4.36-3.5) 609-708+306-108+202-198+497-100 14+15+16+……+45+46 9999+9998+9997+9996 99999×26+33333×22 19175÷59+678 36.5×1.4-8.51÷3.7 1.3-3.79+9.7-6.21 8×0.4×12.5×2.5 125×(8+0.8+0.08) 35 ÷〔78 -(25 +38 )〕 1.7+150 +3.98 17.625-(4.4+58 ) 3.35×6.47×2+6.7×3.6 18.7-3.375-6.625 2.5×4.4 25×1.25×32 (3.75+4.1+2.35)×9.8 1.28+9.8+7.72+10.2 12 ×1120 +12 ×2049 3/7 × 49/9 - 4/3 8/9 × 15/36 + 1/27 12× 5/6 – 2/9 ×3 8× 5/4 + 1/4 6÷ 3/8 – 3/8 ÷6 4/7 × 5/9 + 3/7 × 5/9 5/2 -( 3/2 + 4/5 ) 7/8 + ( 1/8 + 1/9 ) 9 × 5/6 + 5/6 3/4 × 8/9 - 1/3 6 ×( 1/2 + 2/3 ) 8 × 4/5 + 8 × 11/5 7 × 5/49 + 3/14 31 × 5/6 – 5/6 5/9 × 18 – 14 × 2/7 9/7 - ( 2/7 – 10/21 ) 4/5 × 25/16 + 2/3 × 3/4 14 × 8/7 – 5/6 × 12/15 17/32 – 3/4 × 9/24 3 × 2/9 + 1/3 5/7 × 3/25 + 3/7 3/14 ×× 2/3 + 1/6 1/5 × 2/3 + 5/6 9/22 + 1/11 ÷ 1/2 5/3 × 11/5 + 4/3 45 × 2/3 + 1/3 × 15 7/19 + 12/19 × 5/6 1/4 + 3/4 ÷ 2/3 8/7 × 21/16 + 1/2 101 × 1/5 – 1/5 × 21 50+160÷40 (58+370)÷(64-45) 120-144÷18+35 347+45×2-4160÷52 (58+37)÷(64-9×5) (136+64)×(65-345÷23) 178-145÷5×6+42 420+580-64×21÷28 812-700÷(9+31×11) 85+14×(14+208÷26) (284+16)×(512-8208÷18) 120-36×4÷18+35 (58+37)÷(64-9×5) (6.8-6.8×0.55)÷8.5 0.12× 4.8÷0.12×4.8 (3.2×1.5+2.5)÷1.6 3.2×(1.5+2.5)÷1.6 6-1.6÷4= 5.38+7.85-5.37= 7.2÷0.8-1.2×5 6-1.19×3-0.43 6.5×(4.8-1.2×4) 10.15-10.75×0.4-5.7 5.8×(3.87-0.13)+4.2×3.74 32.52-(6+9.728÷3.2)×2.5 0.68×1.9+0.32×1.9 1.客车和货车同时从甲、乙两地的中间向相反的方向行驶,3小时后,客车到达甲地,货车离乙地还有42千米.已知货车和客车的速度比是5:7,甲、乙两地相距多少千米? 3小时客车比货车多行42千米,每小时客车比货车多行42/3=14千米,所以客车速度为14/(7-5)*7=49千米/小时,甲乙相距:49×3×2=245千米 2.一筐苹果卖掉5分之1后,又卖掉8千克,这时剩下的与卖出的比是2:1.这筐苹果原来有多少千克? 两次一共卖出了1/(2+1)=1/3,所以第二次卖掉了1/3-1/5=1/15,所以这筐苹果原来有15/(1/8)=120千克 3.一辆快车和一辆慢车分别从南京和扬州两地同时相向而行,经过2小时在离中点3千米处相遇.已知快车平均每小时行75千米,慢车平均每小时行多少千米? 相遇时快车比慢车多行3×2=6千米,所以每小时快车比慢车多行6/2=3千米,所以慢车平均每小时行75-3=72千米 4.购买同款汽车,张叔叔分期付款要多付百分之7,李叔叔用现金一次性付款享受九五折优惠,张叔叔比李叔叔多付7200元,这辆汽车原价多少万元? 7200/(1+7%-95%)=60000元 5.甲数的3分之2与乙数的5分之3相等,甲数与乙数之和为38,甲数是(18 ). 甲数和乙数的比为(3/5)/(2/3)=9/10,甲数为:38*9/(10+9)=18 6.一个长是4分米的圆柱体,把它截成8个小圆柱体所得表面积的总和,比截成5个小圆柱体所得表面积的总和多180平方厘米,原来圆柱体的体积是(1200 )立方厘米. 截成8个小圆柱,表面积多了14个底面积,截成5个小圆柱,表面积多了8个底面积,所以底面积为:180/(14-8)=30平方厘米,原来圆柱体的体积是:30×4×10=1200立方厘米 7.一个长方体的高减少2厘米后,表面积减少了48平方厘米,成为一个正方体.长方体的体积是(288)立方厘米. 表面积减少的部分是高减少2厘米所减少的侧面积,侧面积=底面周长×高 所以底面周长为48/2=24厘米,底面边长为:24/4=6厘米,长方体的体积为:6×6×(6+2)=288立方厘米 (1/15+3/49)*15-45/49 =1/15*15+3/49*15-45/49 =1+45/49-45/49 =1
[1] [2] 下一页
|