比例的意义和基本性质
一、教学设计学科名称:
《比例的意义和基本性质》(小学数学六年级)
二、所在班级情况,学生特点分析:
有的学生在生活中已经接触或使用过比,并有一些相关的活动经验。但学生对比的理解仅仅停留在形式上。因此,教学力求通过具体的材料帮助学生达成对比的概念的真正理解。学生喜欢探索有趣的、自己熟悉的有挑战性的问题,喜欢探究的、合作的学习方式。因此,教学设计充分考虑学生的特点和需要,借助生活素材,设计了有挑战性的问题让学生思考、讨论,使学生在丰富的学习背景中逐步体会比的意义和价值。
三、教学内容分析:
《比例的意义和基本性质》是人教版数学第十二册的内容。比例的知识在工农业生产和日常生活中有广泛的应用。这部分知识是在学习了比的知识和除法、分数等基础上教学的。而本节课内容是这个单元的第一节课,主要属于概念教学,是为以后解比例,讲解正、反比例做准备的。学生学好这部分知识,不仅可以初步接触函数的思想,而且可以用来解决日常生活中一些具体的问题。因此,本课的教学设计在教学内容的处理方面有以下几点思考:
1.精选典型情境,帮助学生初步体会学习比的必要性、比的意义。
教材中提供了四个情境,每个情境都是同时出现两组、三组或四组相对应的量进行研究,最后对比的结果进行比较。考虑到过多的情节不便于学生集中精力对问题作深入有效的研究和讨论,因此,我选取了“国旗的长和宽”“图形放大缩小”两个情境,一个是生活情境,一个是数学情境(在数学中使用比和比例式最多的就是几何);一个是不同类量的比较,另一个是同类量的比较。每个情境只研究一组相对应的量的变化规律,这样处理更能凸显比的意义和引入比的必要性。其他素材和任务可以在后面的课时完成。
2.联系数学史料,借助比号的写法沟通比和除法、分数的联系和区别。
3.充分联系生活实际让学生体会比的意义和价值。
四、教学目标:
1.根据新课标要求和教材的特点,结合六年级学生的实际水平,可以确定以下教学目标:
(1)通过计算、观察、比较,让学生概括、理解比例的意义和比例的基本性质。
(2)认识比例的各部分名称。
(3)学会用比例的意义或比例的基本性质,判断两个比能不能组成比例,并写出比例。
2.教学重、难点:
理解比例的意义和基本性质,会用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。
五、教学难点分析:
根据本节教材内容和编排特点,为了更好地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,主要让学生在“计算——观察、比较——概括——应用”的学习过程中掌握知识。
六、教学课时:1课时
七、教学设计:
一、创设情境,导入新课
师:同学们,每周一的早上我们学校都要举行庄严的升国旗仪式,那么,你们对国旗都有哪些了解呢?(生自由回答)
师:同学们都说出了自己的想法,说明你们都很热爱我们的国家,希望你们以后一定要好好学习,做一个有用的人,把我们的国家建设的更加美好!五星红旗是庄严而美丽的, 并且它与我们数学也有着密切的联系,这也就是我们今天所要研究的内容:比例(板书课题:比例)
师手指课题:从课题中我们不难看出,比例和比有一定的关系,你们还记得比的意义吗?(学生回答)
好,那下面我们就先来用比的知识解决几道题。(出示四幅图在一起的)
(1)3.2厘米 2厘米 (2) 4.8厘米 3厘米
(3)6.4厘米 4厘米 (4) 9.6厘米 6厘米
二、新授
一、认识比例的意义
1.认识比例。师:画面上出现了四幅不同大小的国旗,请同学们任选两面国旗来算一算它们各自长与宽的比值是多少?然后观察结果,你能发现什么?
(学生板演,观察到比值相等,教师板书:两个比相等)
师:那我们就可以将这两个比用等号连接。(教师板书学生汇报的两个相等的比)
教师边指着这组相等的比一边说:好,像这样表示两个比相等的式子就叫做比例。(把定义补充完整)。这就是比例的意义(把课题板书完整)请同学们齐读。
请同学们再默读一遍比例的意义,思考:想要组成比例必须要具备哪些条件?(学生回答,等式;有两个相等的比)
(教师再强调:一定是比值相等的两个比才能组成比例。)
师:你还能从四面国旗中找出哪些比例?
(学生写在练习本上,然后汇报。教师板书)
师:我们在学习比的时候,可以把比写成分数的形式,比如:60:40=60/40,那比例也能写成分数的形式吗?怎么写?(学生口答)
师:我们刚才一直在强调比和比例的联系,那么比就是比例吗?
2.教学比例各部分的名称。
(1)引导学生读教材(相关内容),认识比例各部分名称。
(2)集体交流。(教师板书:内项、外项)
(3)把比例写成分数形式,指出它的内、外项。
(4)任意写一个比例,同桌相互说一说比例各部分的名称。
二、探究比例的基本性质
1.填数。
(1)出示比例6∶( )=( )∶4。想一想,这两个空可能是哪两个数。
〔刚开始时,学生可能从比例的意义的角度去思考,所以填数相对费时,慢慢地,学生似乎发现了“规律”,填数速度加快。教师将学生的发现(如1和24、2和12、0.5和48……)板书在括号下面,与学生一起判断能否组成比例。〕
(2)观察思考:在填这些数的过程中,你有什么发现?
(这一问题满足了学生的心理需求,学生发现每次所填的两个内项之积相等,进而发现“两个内项之积等于两个外项之积”。)
[1] [2] [3] 下一页
|