小学数学应用题分类解题-平均数应用题
求平均数应用题是在“把一个数平均分成几份,求一份是多少”的简单应用题的基础上发展而成的。它的特征是已知几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等。最后所求的相等数,就叫做这几个数的平均数。 解答这类问题的关键,在于确定“总数量”和与总数量相对应的“总份数”。 计算方法: 总数量÷总份数=平均数 平均数×总份数=总数量 总数量÷平均数=总份数 例1:东方小学六年级同学分两个组修补图书。第一组28人,平均每人修补图书15本;第二组22人,一共修补图书280本。全班平均每人修补图书多少本? 要求全班平均每人修补图书多少本,需要知道全班修补图书的总本数和全班的总人数。 (15×28+280)÷(28+22)=14本 例2:有水果糖5千克,每千克2.4元;奶糖4千克,每千克3.2元;软糖11千克,每千克4.2元。将这些糖混合成什锦糖。这种糖每千克多少元? 要求什锦糖每千克多少元,要先出这几种糖的总价和总重量最后求得平均数,即每千克什锦糖的价钱。 (2.4×5+3.2×4+4.2×11)÷(5+4+11)=3.55元 例3、要挖一条长1455米的水渠,已经挖了3天,平均每天挖285米,余下的每天挖300米。这条水渠平均每天挖多少米? 已知水渠的总长度,平均每天挖多少米,就要先求出一共挖了多少天。 1455÷(3+(1455-285×3)÷300)=291米 例4、小华的期中考试成绩在外语成绩宣布前,他四门功课的平均分是90分。外语成绩宣布后,他的平均分数下降了2分。小华外语成绩是多少分? 解法一:先求出四门功课的总分,再求出一门功课的的总分,然后求得外语成绩。 (90–2)×5–90×4=80分 例5、甲乙丙三人在银行存款,丙的存款是甲乙两人存款的平均数的1.5倍,甲乙两人存款的和是2400元。甲乙丙三人平均每人存款多少元? 要求甲乙丙三人平均每人存款多少元,先要求得三人存款的总数。 (2400÷2×1.5+2400)÷3=1400元 例6、甲种酒每千克30元,乙种酒每千克24元。现在把甲种酒13千克与乙种酒8千克混合卖出,当剩余1千克时正好获得成本,每千克混合酒售价多少元? 要求每千克混合酒售价多少元,要先求得两种酒的总价钱和两种酒的总千克数。因为当剩余1千克时正好获得成本,所以在总千克数中要减去1千克。 (30×13+24×8)÷(13+8–1)=29.1元 例7、甲乙丙三人各拿出相等的钱去买同样的图书。分配时,甲要22本,乙要23本,丙要30本。因此,丙还给甲13.5元,丙还要还给乙多少元? 先求买来图书如果平均分,每人应得多少本,甲少得了多少本,从而求得每本图书多少元。 1. 平均分,每人应得多少本 (22+23+30)÷3=25本 2. 甲少得了多少本 25–22=3本 3. 乙少得了多少本 25–23=2本 4. 每本图书多少元 13.5÷3=4.5元 5. 丙应还给乙多少元 4.5×2=9元 13.5÷[(22+23+30)÷3–22]×[(22+23+30)÷3–23]=9元 例8、小荣家住山南,小方家住山北。山南的山路长269米,山北的路长370米。小荣从家里出发去小方家,上坡时每分钟走16米,下坡时每分钟走24米。求小荣往返一次的平均速度。 在同样的路程中,由于是下坡的不同,去时的上坡,返回时变成了下坡;去时的下坡,回来时成了上坡,因此,所用的时间也不同。要求往返一次的平均速度,需要先求得往返的总路程和总时间。 1、往返的总路程 (260+370)×2=1260米 2、往返的总时间 (260+370) ÷16+(260+370)÷24=65.625分 3、往返平均速度 1260÷65.625=19.2米 (260+370)×2÷[(260+370) ÷16+(260+370)÷24]=19.2米 例9、草帽厂有两个草帽生产车间,上个月两个车间平均每人生产草帽185顶。已知第一车间有25人,平均每人生产203顶;第二车间平均每人生产草帽170顶,第二车间有多少人? 解法一: 可以用“移多补少获得平均数”的思路来思考。 第一车间平均每人生产数比两个车间平均每人平均数多几顶?203–185=18顶;第一车间有25人,共比按两车间平均生产数计算多多少顶?18×25=450。将这450顶补给第二车间,使得第二车间平均每人生产数达到两个车间的总平均数。 6. 第一车间平均每人生产数比两个车间平均顶数多几顶? 203–185=18顶 7. 第一车间共比按两车间平均数逆运算,多生产多少顶? 18×25=450顶 8. 第二车间平均每人生产数比两个车间平均顶数少几顶? 185–170=15顶 9. 第二车间有多少人、 450÷15=30人 (203–185) ×25÷(185–170) =30人
|