教学目标:1、理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。 2、理解和掌握分数的基本性质。 3、培养学生观察、理解、献魈骄考扒ㄒ颇芰Α?/SPAN> 4、较好实现知识教育与思想教育的有效结合。 教学重点:理解和掌握分数的基本性质。 教学难点:能熟练、灵活地运用分数的基本性质。 教具准备:“分数基本性质”课件,正方形纸片,彩色粉笔。 教学过程:一、巧设伏笔、导入新课。 1、出示课件:120÷30的商是多少? 被除数和除都扩大3倍,商是多少? 被除数和除数都缩小10倍呢?(出示后学生回答,课件显示答案) 2、在下面□里填上合适的数。 1÷2=(1×5)÷(2×□) =(1÷□)÷(2÷4) ①想一想,你是根据什么填下面的数的?(生口答) (课件:商不变的性质) ②商不变的性质是什么?(生口答) ③除法与分数之间有什么联系? 生答,师板书:被除数÷除数=被除数/除数 二、讨论探究,学习新知。 1、课件出示:1÷2=(怎么写) ①1/2与()相等?你能想出哪些数?有办法怎么让它们相等吗? 让生合作探讨。 ②生出示答案:1/2=2/4=4/8…… 有选择填入上数。 2、引导学生证明它们相等。 ①出课件:出示1个长方体,平均分成2份,得1/2,平均分成4份,得2/4……。 (课件演示) 上述演示让学生感知后,问你发现了什么?(生讨论) ②再逆向思考,观察板书和课件。 问你又发现了什么?(生讨论) 得到:(板书)分数的分子和分母同时乘上或者除以相同的数,分数的大小不变。 3、验证、补充、强调 ①出示2/5=2×2/5=4/5,对吗?(验证分数的基本性质),为什么?强调“同时”(在黑板板书上用彩笔勾划强调)。 ②出示3/4=3×3/4×4=9/16,对吗?为什么?强调“相同的数”。 ③右边列式行吗?为什么?3/4=3×0/4×0=?补充:(0除外)板书,并出示课件补充。 ④归纳出上述板书为“分数的基本性质”(课题)。 4、信息反馈、纠正、巩固。 ①判断(出示课件) A、分数的分子,分母都乘上或除以相同的数,分数的大小不变。 B、把15/20的分子缩小5倍,分母也缩小5倍,分数的大小不变。 C、3/4的分子乘上3,分母除以3,分数的大小不变。 D、10/24=10÷2/24÷2=10×3/24×3() 完成后,强调重点,加以巩固。 ②完成课本108页例2(学生尝试练习) 强调运用了什么性质?课件:“分数的基本性质”醒目强调。 三、理论练习,信息综合 1、练一练 ①3/5=3×()/5×()=9/() ②7/8=()/48 ③4÷18=()/()=4×5/18×()=2/() 2、练习二十二1—3题。 四、课堂总结、整体感知。 (在信息综合后,重点选择性小结,形成整体),这节课我们学习了什么内容?可以应用在什么地方?这与我们学习过的什么性质有联系? 五、发散巩固、自主选择。 想一想:(选择一道你喜欢的题做) 课件:①与1/2相等的分数有多少个?想象一下,把手中正方形的纸无限地平分下去,可得到多少个与1/2相等的分数。 ②9/24和20/32哪能一个数大一些,你能讲出判断的依据吗
|