设本页为首页                              加入收藏
中文域名: 古今中外.com       英文域名:www.1-123.com     丰富实用的教育教学资料
您现在的位置: 中国哲士网 >> 教育教学 >> 中小学数学 >> 四年级下学期 >> 数学四年级下学期期中 >> 正文

 

北京市高级中等学校招生统一考试(课标卷)参考答案

查询数四年下期中的详细结果

一、选择题(共8个小题,每小题4分,共32分)

    下列各题均有四个选项,其中只有一个是符合题意的,用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑.

1. -3的倒数是( A )

   A.             B.             C. -3            D.3

2. 国家游泳中心——“水立方”是北京2008年奥运会场馆之一,它的外层膜的展开面积给260000平方米,将260000用科学记数法表示应为  ( D )

   A. 0.26×106       B. 26×104        C. 2.6×106        D. 2.6×105


 

3. 如图,Rt△ABC中,∠ABC=90O,DE过点C且平行于AB,若∠BCE=35 O,

则∠A的度数为  ( C )

  A. 35O             B. 45º            C. 55º            D. 65º

4. 若 ,则 的值为 ( C )

   A. -4             B. -1            C. 0              D. 4

5. 北京市2007年5月份某一周的日最高气温(单位:ºC)分别为:25,28,30,29,31,32,28,这周的日最高气温的平均值为。( B )

   A. 28ºC            B. 29ºC           C. 30ºC           D. 31ºC

6. 把代数式 分解因式,下列结果中正确的是。( A )

    A.                          B.

C.                          D.

7. 一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为  ( B )

    A.               B.             C.              D.

8. 右图所示是一个三棱柱纸盒,在下面四个图中,只有一个是这个纸盒的

展开图,那么这个展开图是  ( D )

 

 

 

 

二、填空题(共4个小题,每小题4分,共16分)

 9. 若分式 的值为0,则 的值为    2    .

10. 若关于 的一元二次方程 没有实数根,则 的取值范围是 .

 

 

11. 在五环图案内,分别填写五个数 , , , , ,如图:             ,其中 , 是三个连续偶数 , , 是两个连续奇数 ,且满足 ,例如:            ,. 请你在0到20之间选择另一组符合条件的数填入下图:

 

             

 

12. 2007年北京市统招右图是对种中心为点 的正六边形,如果用一个含30º角的直角三

角板的角,借助点 (使角的顶点落在点 处),把这个正六边形的面

积 等分,那么 的所有可能的值是    2,3,4,6,12      .

 

三、解答题(共5个小题,共25分)

13.(本小题满分5分)

    2007年北京市统招计算:

    解:

 

14.(本小题满分5分)

    解方程:

    解:因为  , ,

          所以 

          代入公式,得 

          所以  原方程的解为 

 

15.(本小题满分5分)

    计算:

    解:

        

       

       

       

 

16.(本小题满分5分)

    已知:如图,OP是∠AOC和∠BOD的平分线,OA=OCOB=OD.

    求证:AB=CD

    证明:∵  OP是∠AOC和∠BOD的平分线,

          ∴

          ∴ 

          在 和 中,

         

          ∴ 

          ∴ 

 

17.(本小题满分5分)

    已知 ,求代数式 的值.

    解析:

       

       

        又 ,故原式 .

 

四、解答题(共2个小题,共10分)

18.(本小题满分5分)

    如图,在梯形ABCD中,AD∥BC,AB = DC = AD,∠C=60º,AE⊥BD于点E,AE=1,求梯形ABCD的高.

    解:作 于点

        ∵  AD∥BC,      ∴ 

        ∵  ,    ∴ 

∴ 

∵ , ,

        ∴ 

        ∵ 于点 , ,    ∴

        在 中,由正弦的定义可得

        ∴梯形 的高为 .

 

19.(本小题满分5分)

   2007北京统考 已知:如图,A是⊙O上一点,半径OC的延长线与过点A

的直线交于B点,OC = BCAC = OB

    (1)求证:AB是⊙O的切线;

    (2)若∠ACD =45º,OC =2,求弦CD的长.

    解:

    (1)证明: 如图,连结

         ∵ 

         ∴ 

         ∴ 是等边三角形

         故   

         又可得        ∴ 

         ∴  是 的切线.

    (2)解:作 于 点.

         ∵  ,      ∴ 

         又  , ,∴在 中,

         在 中,∵  ,∴ 

         由勾股定理,可求得 

         ∴  .

 

五、解答题(本题满分6分)

20. 根据北京市水务局公布的2004年、2005年北京市水资源和用水情况的相关数据,绘制如下统计图表:

    (1)北京市水资源全部由永定河水系、潮白河水系、北运河水系、蓟运河水系、大清河水系提供,请你根据以上信息补全2005年北京市水资源统计图,并计算2005年全市的水资源总量(单位:亿m3);

    (2)在2005年北京市用水情况统计表中,若工业用水量比环境用水量的6倍多0.2亿m3,请你选计算环境用水量(单位:亿m3),再计算2005年北京市用水总量(单位:亿m3);

    (3)根据以上数据,请你计算2005年北京市的缺水量(单位:亿m3);

    (4)结合2004年及2005年北京市的用水情况,谈谈你的看法.

    解:

   (1)补全2005年北京市水资源统计图见右图;

        水资源总量为23.18亿m3

   (2)设2005年环境用水量为 亿m3

        依题意得 

        解得 

        ∴  2005年环境用水量为1.1亿m3

        ∵  13.38+1.1+6.8+13.22=34.5

        ∴  2005年北京市用水总量为34.5亿m3

    (3)∵  34.5-23.18=11.32,∴2005年北京市缺水量为11.32亿m3

    (4)说明:通过对比2004年及2005年北京市的用水情况,能提出积极看法的给分,比如节约用水等.

 

 

 

 

 

六、解答题(共2个小题,共9分)

21.(本小题满分5分)

    在平面直角坐标系 中, 为正方形,点 的坐标为(1,1),将一个最短边长大于 的直角三角形纸片的直角顶点放在对角线 上,

    (1)如图,当三角形纸片的直角顶点与点 重合,一条

直角边落在直线 上时,这个三角形纸片正方形

重叠部分(即阴影部分)的面积为        ;

 

 

    (2)若三角形纸片的直角顶点不与点 、 重合,且两

条直角边与正方形相邻两边相交,当这个三角形纸片与正方形 重叠部分的面积是正方形面积的一半时,试确定三角形纸片直角顶点的坐标(不要求写出求解过程),

    解:(1) ;

       (2)直角顶点的坐标为

         或

        

         此时的图形如右图

 

22.(本小题满分4分)

    在平面直角坐标系 中,反比例函数 的图像与 的图像关于 轴对称,又与直线 交于点 ,试确定 的值.

    解:依题意得,反比例函数 的解析式为

        ∵  点 在反比例函数 的图像上,

        ∴ 

        即  点A的坐标为

        由点 在直线 上

        可求得  .

 

 

七、解答题(本题满分7分)

23. 如图,已知

   (1)请你在 边上分别取两点 、 ( 的中点除

外),连结 、 ,写出使此图中只存在两对面

积相等的三角形的相应条件,并表示出面积相等的

三角形;

   (2)请你根据使(1)成立的相应条件,

        证明 .

    解:

   (1)相应的条件是:  BD = CE ≠ DE  ;

        两对面积相等的三角形分别是: △ABD和△ACE,△ABE和△ACD .

 

   (2)证法1:如图2,分别过点D、B作CA、EA的平行线,

两线交于F点,DF与AB交于G点.

                所以  ∠ACE = ∠FDB,∠AEC = ∠FBD

                在△AEC和△FBD中,又CE = BD

                可证  △AEC ≌ △FBD

                所以  AC = FD,AE = FB

                在△AGD中,AG + DG >AD

                在△BFG中,BG + FG >FB

                所以  AG + DG-AD>0,BG + FG-FB>0

                所以  AG + DG + BG + FG-AD-FB>0

                即  AB + FD>AD + FB

                所以  AB + AC>AD + AE

 

        证法2:如图,分别过点A、E作CB、CA的平行线,两线交于F点,EF与AB交于G点,连结BF. 则四边形FECA是平行四边形,所以 FE = AC,AF = CE.

                因为 BD = CE

                所以 BD = AF

                所以 四边形FBDA是平行四边形

                所以 FB = AD

                在△AGE中,AG + EG >AE

                在△BFG中,BG + FG >FB

                可推得 AG + EG + BG + FG >AE + FB

                所以 AB + AC >AD + AE

 

 

 

 

 

 

 

 

八、解答题(本题满分7分)

24. 在平面直角坐标系 中,抛物线 经过 , 两点.

    (1)求此抛物线的解析式;

    (2)设抛物线的顶点为 ,将直线 沿 轴向下平移两个单位得到直线 ,直线 与抛物线的对称轴交于 点,求直线 的解析式;

    (3)在(2)的条件下,求到直线 、 、 距离相等的点的坐标.

    解:

    (1)由题意可得

         故抛物线的解析式为: .

    (2)由 可知抛物线的顶点坐标为B( ),故C( ),且直线 过原点. 设直线 的解析式为 ,则有 . 故直线 的解析式为 .

    (3)到直线OB、OC、BC距离相等的点有四个.

         由勾股定理可知OB=OC=BC=2,故△OBC为等边三角形,四边形ABCO是菱形,且∠BCO=60°,连接AC交x轴于一点M,易证点M到OB、OC、BC的距离相等. 由点A在∠BCO的平分线上,故它到BC、CO的距离相等均为 ,

         同时不难计算出点A到OB的距离为 ,故点A也算其中一个. 同理,不难想到向左、向下可以分别作与ABCO全等的菱形(如图所示,其中△OBC为新菱形的一半),此时必然存在两个点,使得它到直线OB、OC、BC的距离相等.

         此四个点的坐标分别为:M( )、A(0,2)、(0,-2)、( ).

 

九、解答题(本题满分8分)

25. 我们知道:有两条边相等的三角形叫做等腰三角形,类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形.

   (1)请写出一个你学过的特殊四边形中是等对边四边形的图形的名称;

   (2)如图,在 中,点 、 分别在 、 上,设 、 相交于 ,若 , ,请你写出图中一个与 相等的角,并猜想图中哪个四边形是等对边四边形;

   (3)在 中,如果 是不等于60º的锐角,点 、 分别在 、 上,且 ,探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论.

   解:

  (1)平行四边形、等腰梯形等满足条件的即可.

 

  (2)与∠A相等的角是∠BOD(或∠COE)

       四边形DBCE是等对边四边形.

 

  (3)此时存在等对边四边形DBCE.

       证明1:如图,作CG⊥BE于G点,作BF⊥CD交CD的延长线于F点.

               ∵∠DCB=∠EBC= ∠A,BC为公共边

               ∴△BGC≌△CFB

               ∴BF=CG

               ∵∠BDF=∠ABC+∠DCB=∠ABE+∠EBC+∠DCB=∠ABE+∠A

                 ∠GEC=∠ABE+∠A

               ∴△BDF≌△CEG

               ∴BD=CE

               故四边形DBCE是等对边四边形.

                      

      

 

证明2:如图,在BE上取一点F,使得BF=CD,连接CF.

              易证△BCD≌△CBF,故BD=CF,∠FCB=∠DBC.

              ∵∠CFE=∠FCB+∠CBF=∠DBC+∠CBF=∠ABE+2∠CBF=∠ABE+∠A

                ∠CEF=∠ABE+∠A

              ∴CF=CE

              ∴BF=CE

              故四边形DBCE是等对边四边形.

来源:中国哲士网

教师学生家长 数四年下期中资料 备课考试教学

教育资料 北京市高级中等学校招生统一考试(课标卷)参考答案 文章

  • 上一篇文章:
  • 下一篇文章:
  •  

     

    相关文章
    数四年级数学上学期期中考试模拟试题
    高中一年级英语上册Unit3单元测试卷
    高中一年级英语上册Unit4单元测试卷
    高中一年级英语上册Unit5单元测试卷
    高一英语半期考试卷
    初三英语月考试卷(9A Units 1-4)
    九年级Unit 1单元测试
    高考英语试题及答案(浙江卷)
    六年级英语上学期期中测试题
    高三英语精选单选题错题100集
    五年级英语上学期期中测试题
    四年级数学上学期期中考试模拟试题(…
    2009-2010学年度上学期四年级期中考…
    普通高等学校招生全国统一考试(江西…
    全国普通高等学校招生统一考试上海 …
    高等学校招生全国统一考试数学(广东…
    高等学校招生全国统一考试(天津卷)…
    小学数学四年级上学期期中调研检测试…
    小学数学四年级上学期期中测试题
    高三第一次月考英 语 试 题 卷
    小学二年级上学期组词扩词竞赛试题
    高考英语试题及答案(辽宁卷)
    高考英语试题及答案(重庆卷)
    四年级数学上学期期中测试题
    四年级语文上学期期中测试题
    五年级语文上学期期中测试题
    五年级数学上学期期中测试题
    高中一年级英语上册Unit2单元测试卷
    小学六年级第一学期数学期中测试题
    四年级数学上学期期中考试模拟试题
    小学数学四年级上学期期中调研检测试…
    小学数学 四年级上学期期中测试题
    六年级下学期期末模拟试卷
    小学四年级期中调研语文检测题
    小学五年级数学竞赛
    五年级数学竞赛题
    六年级毕业统测模拟考
    小学毕业语文模拟试卷
    高中一年级英语上册Unit1单元测试卷(…
    六年级数学毕业测试题
    初中毕业、升学考试数 学 试 题
    苏教版小学数学第七册期中试卷
    苏教版 小学数学第七册期中试卷
    六年级下学期期末模拟试卷
    小学数学四年级上学期期中测试题
    高三教材复习一-------Units 1-2
    高三检测题(Units 1-3)
    高二英语上期期中考试试题(新人教版)…
    高三教材复习三英语——Unit 5—6
    人教版六年级上册语文第四单元试卷
    高二英语上期第二次阶段考试卷(新人教…
    高二英语Unit 1同步基础训练(答 案)
    高二英语第3单元同步基础训练(答案)
    高二英语第4单元同步基础训练(答案)
    高二英语第5单元同步基础训练(答案)
    湖南省张家界市中考数学试卷
    湖北省十堰市初中毕业生学业考试数学…
    上海市初中毕业统一学业考试理化试卷
    北京市第一学期期末统一考试初三物理…
    初中毕业学业考试——化学试题卷
    高三教材复习------Units 3-4
    高考状元谈物理学习与复习
    七年级数学期中考试试卷及答案
    初一上册期中调研考试题
    人教版六年级上册语文第一单元试卷
    人教版六年级上册语文第二单元试卷
    人教版六年级上册语文第三单元试卷
    四年级第七册数学期中测试
    小学英语六年级智力测试题
    牛津小学英语毕业复习提纲及测试题
    牛津版小学英语六年级分类复习汇总测…
    六年级语文上学期期中测试题
    四年级品德与社会上学期期中测试题
    五年级品德与社会上学期期中测试题
    四年级数学上学期期中试卷分析
    四年级上学期数学期中试卷
    四年级应用能力练习
    小学四年级教学质量过程监测题(七)…
    初中毕业生学业考试(物理试卷)

    2004-2010  中国哲士网版权所有 引用本站内容请指明来源  给本站投稿   备案序号 蜀ICP备05009253号