1835年,法国的斯特姆提出确定代数方程式实根位置的方法。
1836年,法国的柯西证明解析系数微分方程解的存在性。
瑞士的史坦纳证明具有已知周长的一切封闭曲线中包围最大面积的图形一定是圆。
1837年,德国的狄利克莱第一次给出了三角级数的一个收敛性定理。
1840年,德国的狄利克莱把解析函数用于数论,并且引入了“狄利克莱”级数。
1841年,德国的雅可比建立了行列式的系统理论。
1844年,德国的格拉斯曼研究多个变元的代数系统,首次提出多维空间的概念。
1846年,德国的雅克比提出求实对称矩阵特征值的雅可比方法。
1847年,英国的布尔创立了布尔代数,在后来的电子计算机设计有重要应用。
1848年,德国的库莫尔研究各种数域中的因子分解问题,引进了理想数。
英国的斯托克斯发现函数极限的一个重要概念——一致收敛,但未能严格表述。
1850年,德国的黎曼给出了“黎曼积分”的定义,提出函数可积的概念。
1851年,德国的黎曼提出共形映照的原理,在力学、工程技术中应用颇多,但未给出证明。
1854年,德国的黎曼建立了更广泛的一类非欧几何学——黎曼几何学,并提出多维拓扑流形的概念。
俄国的车比雪夫开始建立函数逼近论,利用初等函数来逼近复杂的函数。二十世纪以来,由于电子计算机的应用,使函数逼近论有很大的发展。
1856年,德国的维尔斯特拉斯确立极限理论中的一致收敛性的概念。
1857年,德国的黎曼详细地讨论了黎曼面,把多值函数看成黎曼面上的单值函数。
1868年,德国的普吕克在解析几何中引进一些新的概念,提出可以用直线、平面等作为基本的空间元素。
1870年,挪威的李发现李群,并用以讨论微分方程的求积问题。
德国的克朗尼格给出了群论的公理结构,这是后来研究抽象群的出发点。
1872年,数学分析的“算术化”,即以有理数的集合来定义实数(德国 戴特金、康托尔、维尔斯特拉斯)。
德国的克莱茵发表了“埃尔朗根纲领”,把每一种几何学都看成是一种特殊变换群的不变量论。
1873年,法国的埃尔米特证明了e是超越数。
1876年,德国的维尔斯特拉斯出版《解析函数论》,把复变函数论建立在了幂级数的基础上。
1881~1884年,美国的吉布斯制定了向量分析。
1881~1886年,法国的彭加勒连续发表《微分方程所确定的积分曲线》的论文,开创微分方程定性理论。
1882年,德国的林德曼证明了圆周率是超越数。
英国的亥维赛制定运算微积,这是求解某些微分方程的简便方法,工程上常有应用。