1248年,中国宋朝的李治著《测圆海镜》十二卷,这是第一部系统论述“天元术”的著作。
1261年,中国宋朝的杨辉著《详解九章算法》,用“垛积术”求出几类高阶等差级数之和。
1274年,中国宋朝的杨辉发表《乘除通变本末》,叙述“九归”捷法,介绍了筹算乘除的各种运算法。
1280年,元朝《授时历》用招差法编制日月的方位表(中国 王恂、郭守敬等)。
十四世纪中叶前,中国开始应用珠算盘,并逐渐代替了筹算。
1303年,中国元朝的朱世杰著《四元玉鉴》三卷,把“天元术”推广为“四元术”。
1464年,德国的约·米勒在《论各种三角形》(1533年出版)中,系统地总结了三角学。
1489年,德国的魏德曼用“+”、“-”表示正负。
1494年,意大利的帕奇欧里发表《算术集成》,反映了当时所知道的关于算术、代数和三角学的知识。
1514年,荷兰的贺伊克用“+”、“-”作为加减运算的符号。
1535年,意大利的塔塔利亚发现三次方程的解法。
1540年,英国的雷科德用“=”表示相等。
1545年,意大利的卡尔达诺、费尔诺在《大法》中发表了求三次方程一般代数解的公式。
1550~1572年,意大利的邦别利出版《代数学》,其中引入了虚数,完全解决了三次方程的代数解问题。
1585年,荷兰的斯蒂文提出分数指数概念与符号;系统导入了十进制分数与十进制小数的意义、计算法及表示法。
1591年左右,德国的韦达在《美妙的代数》中首次使用字母表示数字系数的一般符号,推进了代数问题的一般讨论。
1596年,德国的雷蒂卡斯从直角三角形的边角关系上定义了6个三角函数。
1596~1613年,德国的奥脱、皮提斯库斯完成了六个三角函数的每间隔10秒的十五位小数表。
1614年,英国的耐普尔制定了对数,做出第一张对数表,只做出圆形计算尺、计算棒。
1615年,德国的开卜勒发表《酒桶的立体几何学》,研究了圆锥曲线旋转体的体积。
1635年,意大利的卡瓦列利发表《不可分连续量的几何学》,书中避免无穷小量,用不可分量制定了一种简单形式的微积分。
1637年,法国的笛卡尔出版《几何学》,提出了解析几何,把变量引进数学,成为“数学中的转折点”。
1638年,法国的费尔玛开始用微分法求极大、极小问题。
意大利的伽里略发表《关于两种新科学的数学证明的论说》,研究距离、速度和加速度之间的关系,提出了无穷集合的概念,这本书被认为是伽里略重要的科学成就。
1639年,法国的迪沙格发表了《企图研究圆锥和平面的相交所发生的事的草案》,这是近世射影几何学的早期工作。