正比例的应用 教学内容 教科书第54页例3,练习十二5,6,7题。 教学目标 1.进一步理解正比例的意义,会运用正比例知识解决简单的实际问题。 2.通过运用正比例解决实际问题的活动,让学生体验数学的应用价值,培养学生解决问题的能力。 3.渗透函数思想,使学生受到辩证唯物主义观念的启蒙教育。 教学重、难点 运用正比例知识解决简单的实际问题。 教学准备 教具:多媒体课件。 学具:作业本,数学书。 教学过程 一、复习引入 1.判断下面各题中的两种量是不是成正比例?为什么? (1)飞机飞行的速度一定,飞行的时间和航程。 (2)梯形的上底和下底不变,梯形的面积和高。 (3)一个加数一定,和与另一个加数。 (4)如果y=3x,y和x。 2.揭示课题 教师:我们已经学过正比例的一些知识,应用这些知识可以解决生活中的实际问题。这节课,我们就来学习"正比例的应用"。 二、合作交流,探索新知 1.用课件出示例3 教师:这幅图告诉我们一个什么事情?需要解决什么问题? 教师:先独立思考,再小组合作交流,看能想出哪些方法解决这个问题。 2.全班交流解答方法 指导学生思考出: (1)195÷5×8=312(元),先求每份报纸的单价,再求8份报纸的总价,就是李老师应付给邮局的钱。 (2)195÷(5÷8)=312(元),先求5份报纸是8份报纸的几分之几,即195元占李老师所付钱的几分之几,最后求出李老师所付的钱。 (3)195×(8÷5)=312(元),先求出8份报纸是5份报纸的几倍,再把195元扩大相同的倍数后,结果就是李老师所付的钱。 …… 3.尝试用正比例知识解答 如果有学生想出用正比例方法解答,教师可以直接问:"你为什么要这样解?"让学生说出解题理由后再归纳其方法;如果学生没想到用正比例知识解答,教师可作如下引导。 教师:除了这些解题方法外,我们还会用正比例方法解答吗?请同学们用学过的有关正比例的知识思考: (1)题中有哪两种相关联的量? (2)题中什么量是不变的?一定的? (3)题中这两种相关联的量是什么关系? 引导学生分析出:题中有所订报纸份数和所付总钱数这两个相关联的量,它们的关系是所付总钱数÷所订报纸份数=每份报纸单价,而题中的每份报纸单价一定,因此所付总钱数和所订报纸份数成正比例关系。 随学生的回答,教师可同步板书: 教师:运用我们前面所学的正比例知识,同学们会解答吗?准备怎样列比例式? 引导学生讨论后回答,先要把李老师应付的钱数设为x元,再根据所付总钱数所订份数=每份报纸单价的关系式,列式为1955=x8。 教师:同学们会计算吗?把这个比例式计算出来。 学生解答。 教师:解答得对不对呢?你准备怎样验算? 学生讨论验算方法,教师引导:把求出的312元代入等式,左式=1955=39,右式=3128=39,左式=右式,也就是它们的比值相等,与题意相符,所以所求的解是正确的。 三、课堂活动 1.出示教科书第49页的例1图和补充条件 竹竿长(m)26… 影子长(m)39… 教师:在这个表中有哪两种量?它们相关联吗?它们成什么关系?你是根据什么判断的? 教师出示问题:小明和小刚测量出旗杆影子长21 m,请问旗杆有多高呢?根据刚才我们判断的比例关系,你能列出等式吗? 学生独立思考解答,讨论交流。 2.小结方法 教师:你觉得我们在用正比例知识解决上面两个问题的时候,步骤是怎样的?(初步归纳,不求学生强记,只求理解。) (1)设所求问题为x。 (2)判断题中的两个相关联的量是否成正比例关系。 (3)列出比例式。 (4)解比例,验算,写答语。 四、练习应用 完成练习十二的5,6,7题。 五、课堂小结 这节课我们学习了什么知识?你有什么收获?
|