由于数学研究对象的数量关系与空间形式都来自现实世界,因而数学尽管在形式上具有高度的抽象性,而实质上总是扎根于现实世界的。生活实践与技术需要始终是数学的真正源泉,反过来,数学对改造世界的实践又起着重要的、关键性的作用。理论上的丰富提高与应用的广泛深入在数学史上始终是相伴相生,相互促进的。
但由于各民族各地区的客观条件不同,数学的具体发展过程是有差异的。大体说来,古代中华民族以竹为筹,以筹运算,自然地导致十进位值制的产生。计算方法的优越有助于对实际问题的具体解决。由此发展起来的数学形成了一个以构造性、计算性、程序化与机械化为其特色,以从问题出发进而解决问题为主要目标的独特体系。而在古希腊则着重思维,追求对宇宙的了解。由此发展成以抽象了的数学概念与性质及其相互间的逻辑依存关系为研究对象的公理化演绎体系。
中国的数学体系在宋元时期达到高峰以后,开始陷于停顿且几至消失。而在欧洲,经过文艺复兴运动、宗教革命、资产阶级革命等一系列的变革,导致了工业革命与技术革命。机器的使用,不论中外都由来已久。但在中国,则由于明初被帝王斥为奇技淫巧而受阻抑。
在欧洲,则由于工商业的发展与航海的刺激而得到发展,机器使人们从繁重的体力劳动中解放出来,并引导到理论力学和一般的运动和变化的科学研究。当时的数学家都积极参与了这些变革以及相应数学问题的解决,产生了积极的效果。解析几何与微积分的诞生,成为数学发展的一个转折点。17世纪以来数学的飞跃,大体上可以看成是这些成果的延续与发展。
20世纪出现了各种崭新的技术,产生了新的技术革命,特别是电子计算机的出现,使数学又面临了一个新的时代。这一时代的特点之一就是部分脑力劳动的逐步机械化。与17世纪以来以围绕连续、极限等概念为主导思想与方法的数学不同,由于计算机研制与应用的需要,离散数学与组合数学开始受到重视。
计算机对数学的作用已不仅仅只限于数值计算,也开始更多的涉及符号运算(包括机器证明等数学研究)。为了与计算机更好地配合,数学对于构造性、计算性、程序化与机械化的要求也显得颇为突出。
例如,代数几何是一门高度抽象化的数学,而最近出现的计算性代数几何与构造性代数几何的提法,即其端倪之一。总之,数学正随着新的技术革命而不断发展。