设本页为首页                              加入收藏
中文域名: 古今中外.com       英文域名:www.1-123.com     丰富实用的古今中外人物库
您现在的位置: 中国哲士网 >> 按拼音检索 >> H >> han >> 韩信 >> 正文

 

冷兵器时代:名人录——韩信

外这位韩信还有一个弟弟韩柳。
  秦朝末年,楚汉相争。一次,韩信将1500名将士与楚王大将李锋交战。苦战一场,楚军不敌,败退回营,汉军也死伤四五百人,于是韩信整顿兵马也返回大本营。当行至一山坡,忽有后军来报,说有楚军骑兵追来。只见远方尘土飞扬,杀声震天。汉军本来已十分疲惫,这时队伍大哗。韩信兵马到坡顶,见来敌不足五百骑,便急速点兵迎敌。他命令士兵3人一排,结果多出2名;接着命令士兵5人一排,结果多出3名;他又命令士兵7人一排,结果又多出2名。韩信马上向将士们宣布:我军有1173名勇士,敌人不足五百,我们居高临下,以众击寡,一定能打败敌人。汉军本来就信服自己的统帅,这一来更相信韩信是“神仙下凡”、“神机妙算”。于是士气大振。一时间旌旗摇动,鼓声喧天,汉军步步进逼,楚军乱作一团。交战不久,楚军大败而逃。

  首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然後再加3,得9948(人)。

  在一千多年前的《孙子算经》中,有这样一道算术题:

  “今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”按照今天的话来说:一个数除以3余2,除以5余3,除以7余2,求这个数.

  这样的问题,也有人称为“韩信点兵”.它形成了一类问题,也就是初等数论中解同余式.这类问题的有解条件和解的方法被称为“中国剩余定理”,这是由中国人首先提出的.

  ① 有一个数,除以3余2,除以4余1,问这个数除以12余几?

  解:除以3余2的数有:

  2, 5, 8, 11,14, 17, 20, 23….

  它们除以12的余数是:

  2,5,8,11,2,5,8,11,….

  除以4余1的数有:

  1, 5, 9, 13, 17, 21, 25, 29,….

  它们除以12的余数是:

  1, 5, 9, 1, 5, 9,….

  一个数除以12的余数是唯一的.上面两行余数中,只有5是共同的,因此这个数除以12的余数是5.

  如果我们把①的问题改变一下,不求被12除的余数,而是求这个数.很明显,满足条件的数是很多的,它是 5+12×整数,

  整数可以取0,1,2,…,无穷无尽.事实上,我们首先找出5后,注意到12是3与4的最小公倍数,再加上12的整数倍,就都是满足条件的数. 这样就是把“除以3余2,除以4余1”两个条件合并成“除以12余5”一个条件.《孙子算经》提出的问题有三个条件,我们可以先把两个条件合并成一个.然后再与第三个条件合并,就可找到答案.

  ②一个数除以3余2,除以5余3,除以7余2,求符合条件的最小数.

  解:先列出除以3余2的数:

  2, 5, 8, 11, 14, 17, 20, 23, 26,…,

  再列出除以5余3的数:

  3, 8, 13, 18, 23, 28,….

  这两列数中,首先出现的公共数是8.3与5的最小公倍数是15.两个条件合并成一个就是8+15×整数,列出这一串数是8, 23, 38,…,再列出除以7余2的数 2, 9, 16, 23, 30,…,

  就得出符合题目条件的最小数是23.

  事实上,我们已把题目中三个条件合并成一个:被105除余23.

  那么韩信点的兵在1000-1500之间,应该是105×10+23=1073人

  中国有一本数学古书「孙子算经」也有类似的问题:「今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?」

  答曰:「二十三」

  术曰:「三三数之剩二,置一百四十,五五数之剩三,置六十三,七七数之剩二,置三十,并之,得二百三十三,以二百一十减之,即得。凡三三数之剩一,则置七十,五五数之剩一,则置二十一,七七数之剩一,则置十五,即得。」

  孙子算经的作者及确实著作年代均不可考,不过根据考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。中国剩余定理(Chinese Remainder Theorem)在近代抽象代数学中占有一席非常重要的地位。

  简单扼要总结:

  1.算两两数之间的能整除数

  2.算三个数的能整除数

  3.用1中的三个整除数之和减去2中的整除数之差(有时候是倍数)

  4计算结果即可

  韩信带1500名兵士打仗,战死四五百人,站3人一排,多出2人;站5人一排,多出4人;站7人一排,多出6人。韩信马上说出人数:1049

  如多一人,即可凑整。幸存人数应在1000~1100人之间,即得出:

  3乘5乘7乘10减1=1049(人)

  司马迁评价韩信

  太史公曰:吾如淮阴,淮阴人为余言,韩信虽为布衣时,其志与众异。其母

  死,贫无以葬,然乃行营高敞地,令其旁可置万家。余视其母冢,良然。假令韩

  信学道谦让,不伐己功,不矜其能,则庶几哉,於汉家勋可以比周、召、太公之

  徒,后世血食矣。不务出此,而天下已集,乃谋畔逆,夷灭宗族,不亦宜乎!

  译文:

  我曾经到过淮阴县,那里的人告诉我,韩信即使在一介平民时,志气也是和平常人不一样的。那时,他的母亲过世,家里贫穷,韩信无办法按照当时的礼节安葬母亲。但是,他却寻找到一个风水宝地——地势高并且宽敞平坦,可以容纳上万户人家居住的地方作为母亲的墓地。我,也到过他母亲的墓地,果然和淮阴父老说的那样。假使能够让韩信修学道德,养成谦让有礼的品格,不夸耀自己的功劳,不自恃自己的功劳,那就可以功名与福禄齐全了。那么,他对于西汉王朝的贡献,简直就可以和周代的周公旦、召公

上一页  [1] [2] [3] [4] [5] [6] [7] 下一页

来源:中国哲士网

世界人物库,古今中外人物资料 韩信简介,介绍,生平事迹 图片照片

有关作品冷兵器时代:名人录——韩信详细资料

  • 上一篇文章:
  • 下一篇文章:
  •  

     

    相关文章
  • 人物资料查询方法:你可以按拼音字母检索的方法查询,也可以按分类列表查看的方法查询
  • 人物字典  A B C D E F G H J
  • K L M N O P Q R S T W X Y Z
  • 2004-2010  中国哲士网版权所有 引用本站内容请指明来源  给本站投稿   备案序号 蜀ICP备05009253号