20世纪初,随着新的数学理论和方法的出现,力学研究又蓬勃发展起来,创立了许多新的理论,同时也解决了工程技术中大量的关键性问题,如航空工程中的声障问题和航天工程中的热障问题等。
这时的先导者是普朗特和卡门,他们在力学研究工作中善于从复杂的现象中洞察事物本质,又能寻找合适的解决问题的数学途径,逐渐形成一套特有的方法。从20世纪60年代起,计算机的应用日益广泛,力学无论在应用上或理论上都有了新的进展。
力学在中国的发展经历了一个特殊的过程。与古希腊几乎同时,中国古代对平衡和简单的运动形式就已具备相当水平的力学知识,所不同的是未建立起像阿基米德那样的理论系统。
在文艺复兴前的约一千年时间内,整个欧洲的科学技术进展缓慢,而中国科学技术的综合性成果堪称卓著,其中有些在当时世界居于领先地位。这些成果反映出丰富的力学知识,但终未形成系统的力学理论。到明末清初,中国科学技术已显著落后于欧洲。
学科性质
物理科学的建立是从力学开始的。在物理科学中,人们曾用纯粹力学理论解释机械运动以外的各种形式的运动,如热、电磁、光、分子和原子内的运动等。当物理学摆脱了这种机械(力学)的自然观而获得健康发展时,力学则在工程技术的推动下按自身逻辑进一步演化,逐渐从物理学中独立出来。
20世纪初,相对论指出牛顿力学不适用于高速或宇宙尺度内的物体运动;20年代,量子论指出牛顿力学不适用于微观世界。这反映人们对力学认识的深化,即认识到物质在不同层次上的机械运动规律是不同的。所以通常理解的力学,是指以宏观的机械运动为研究内容的物理学分支学科。许多带“力学”名称的学科,如热力学、统计力学、相对论力学、电动力学、量子力学等,在习惯上被认为是物理学的其它分支,不属于力学的范围。
力学与数学在发展中始终相互推动,相互促进。一种力学理论往往和相应的一个数学分支相伴产生,如运动基本定律和微积分,运动方程的求解和常微分方程,弹性力学及流体力学和数学分析理论,天体力学中运动稳定性和微分方程定性理论等,因此有人甚至认为力学应该也是一门应用数学。但是力学和其它物理学分支一样,还有需要实验基础的一面,而数学寻求的是比力学更带普遍性的数学关系,两者有各自不同的研究对象。
力学不仅是一门基础科学,同时也是一门技术科学,它是许多工程技术的理论基础,又在广泛的应用过程中不断得到发展。当工程学还只分民用工程学(即土木工程学)和军事工程学两大分支时,力学在这两个分支中就已经起着举足轻重的作用。工程学越分越细,各个分支中许多关键性的进展,都有赖于力学中有关运动规律、强度、刚度等问题的解决。