院、彼得堡科学院先后都建立起来了。据传,他还曾经通过传教士,建议中国清朝的康熙皇帝在北京建立科学院。
就在莱布尼茨倍受各个宫廷青睐之时,他却已开始走向悲惨的晚年了。1716年11月14日,由于胆结石引起的腹绞痛卧床一周后,莱布尼茨孤寂地离开了人世,终年70岁。
莱布尼茨一生没有结婚,没有在大学当教授。他平时从不进教堂,因此他有一个绰号 Lovenix,即什么也不信的人。他去世时教士以此为借口,不予理睬,曾雇用过他的宫廷也不过问,无人前来吊唁。弥留之际,陪伴他的只有他所信任的大夫和他的秘书艾克哈特。艾克哈特发出讣告后,法国科学院秘书封登纳尔在科学院例会时向莱布尼茨这位外国会员致了悼词。1793年,汉诺威人为他建立了纪念碑;1883年,在莱比锡的一座教堂附近竖起了他的一座立式雕像;1983年,汉诺威市政府照原样重修了被毁于第二次世界大战中的“莱布尼茨故居”,供人们瞻仰。
始创微积分
17世纪下半叶,欧洲科学技术迅猛发展,由于生产力的提高和社会各方面的迫切需要,经各国科学家的努力与历史的积累,建立在函数与极限概念基础上的微积分理论应运而生了。
微积分思想,最早可以追溯到希腊由阿基米德等人提出的计算面积和体积的方法。1665年牛顿创始了微积分,莱布尼茨在1673~1676年间也发表了微积分思想的论著。
以前,微分和积分作为两种数学运算、两类数学问题,是分别的加以研究的。卡瓦列里、巴罗、沃利斯等人得到了一系列求面积(积分)、求切线斜率(导数)的重要结果,但这些结果都是孤立的,不连贯的。
只有莱布尼茨和牛顿将积分和微分真正沟通起来,明确地找到了两者内在的直接联系:微分和积分是互逆的两种运算。而这是微积分建立的关键所在。只有确立了这一基本关系,才能在此基础上构建系统的微积分学。并从对各种函数的微分和求积公式中,总结出共同的算法程序,使微积分方法普遍化,发展成用符号表示的微积分运算法则。因此,微积分“是牛顿和莱布尼茨大体上完成的,但不是由他们发明的”。
然而关于微积分创立的优先权,在数学史上曾掀起了一场激烈的争论。实际上,牛顿在微积分方面的研究虽早于莱布尼茨,但莱布尼茨成果的发表则早于牛顿。
莱布尼茨1684年10月在《教师学报》上发表的论文《一种求极大极小的奇妙类型的计算》,是最早的微积分文献。这篇仅有六页的论文,内容并不丰富,说理也颇含糊,但却有着划时代的意义。
牛顿在三年后,即1687年出版的《自然哲学的数学原理》的第一版和第二版也写道:“十年前在我和最杰出的几何学家莱布尼茨的通信中,我表明我已经知道确定极大值和极小值的方法、作切线的方法以及类似的方法,但我在交换的信件中隐瞒了这方法,……这位最卓越的科学家在回信中写道,他也发现了一种同样的方法。他并诉述了他的方法,它与我的方法几乎没有什么不同,除了他的措词和符号而外”(但在第三版及以后再版时,这段话被删掉了)。
因此,后来人们公认牛顿和莱布尼茨是各自独立地创建微积分的。
牛顿从物理学出发,运用集合方法研究微积分,其应用上更多地结合了运动学,造诣高于莱布尼茨。莱布尼茨则从几何问题出发,运用分析学方法引进微积分概念、得出运算法则,其数学的严密性与系统性是牛顿所不及的。
莱布尼茨认识到好的数学符号能节省思维劳动,运用符号的技巧是数学成功的关键之一。因此,他所创设的微积分符号远远优于牛顿的符号,这对微积分的发展有极大影响。1713年,莱布尼茨发表了《微积分的历史和起源》一文,总结了自己创立微积分学的思路,说明了自己成就的独立性。
高等数学上的众多成就
莱布尼茨在数学方面的成就是巨大的,他的研究及成果渗透到高等数学的许多领域。他的一系列重要数学理论的提出,为后来的数学理论奠定了基础。
莱布尼茨曾讨论过负数和复数的性质,得出复数的对数并不存在,共扼复数的和是实数的结论。在后来的研究中,莱布尼茨证明了自己结论是正确的。他还对线性 上一页 [1] [2] [3] [4] [5] 下一页
|