亨利·庞加莱(Jules Henri Poincaré)是法国数学家,1854年4月29日生于南锡,1912年7月17日卒于巴黎。 庞加莱的父母亲都出身于法国的显赫世家,几代人都居住在法国东部的洛林。庞加莱从小就显出超常的智力,他智力的重要来源之一是遗传。他的双亲智力都很高,他的双亲又可追溯到他的祖父。他的祖父曾在拿破仑政权下的圣康坦部队医院供职,1817年在鲁昂定居,先后生下两个儿子,大儿子莱昂·庞加莱即为庞加莱的父亲。 庞加莱的父亲是当地一位著名医生,并任南锡大学医学院教授。他的母亲是一位善良、才华出众、很有教养的女性,一生的心血全部倾注到教育和照料孩子身上。庞加莱叔叔的两个儿子是法国政界的著名人物:雷蒙·庞加莱于1913至1920年间任法国总统;吕西·庞加莱曾任法国民众教育与美术部长,负责中等教育工作。 庞加莱的童年主要接受母亲的教育。他的超常智力使他成为早熟的儿童,不仅接受知识极为迅速,而且口才也很流利。但不幸的事发生了:五岁时患了一场白喉病、九个月后喉头坏了,致使他的思想不能顺利用口头表达出来,并成为一位体弱多病的入。尽管如此,庞加莱还是乐意玩耍游戏,喜欢跳舞。当然,剧烈的运动他是无法进行。 庞加莱特别爱好读书,读书的速度快得惊人,而且能对读过的内容迅速、准确、持久地记住。他甚至能讲出书中某件事是在第几页第几行中讲述的!庞加莱还对博物学发生过特殊的兴趣,《大洪水前的地球》一书据说给他留下了终身不忘的印象。他对自然史的兴趣也很浓,历史、地理的成绩也很优异。他在儿童时代还显露了文学才华,有的作文被老师誉为“杰作”。 庞加莱l862年进入南锡中学读书。初进校时虽然他的各科学习成绩十分优异,但并没有对数学产生特殊的兴趣。对数学的特殊兴趣大约开始于15岁,并很快就显露了非凡才能。从此,他习惯于一边散步,一边解数学难题。这种习惯一直保持终身。 1870年7月19日爆发的普法战争使得庞加莱不得不中断学业。法国战败了,法国的许多城乡被德军洗劫一空并被德军占领。为了了解时局,他很快学会了德文。他通过亲眼看到的德军的暴行,使他成了一个炽热的爱国者。 1871年3月18日,巴黎无产者举行了武装起义,普法的反动派又很快联合起来扑灭了革命烈火,庞加莱又继续上学了。1872年庞加莱两次荣获法国公立中学生数学竞赛头等奖,从而使他于1873年被高等工科学校作第一名录取。据说,在南锡中学读书时,他的老师就誉称他为“数学巨人”。高等工科学校为了测试他的数学才能还特意设计了一套“漂亮的问题”,一方面要考出他的数学天才;另一方面也为了避免40年前伽罗瓦的教训重演。 1875年~1878年,庞加莱在高等工科学校毕业后,又在国立高等矿业学校学习工程,准备当一名工程师。但他却缺少这方面的勇气,且与他的兴趣不符。 1879年8月1日,庞加莱撰写了关于微分方程方面的博士论文,获得了博士学位。然后到卡昂大学理学院任讲师,1881年任巴黎大学教授,直到去世。这样,庞加莱一生的科学事业就和巴黎大学紧紧地联在一起了。 庞加莱的研究涉及数论、代数学、几何学、拓扑学等许多领域,最重要的工作是在分析学方面。他早期的主要工作是创立自守函数理论(1878)。他引进了富克斯群和克莱因群,构造了更一般的基本域。他利用后来以他的名字命名的级数构造了自守函数,并发现这种函数作为代数函数的单值化函数的效用。 1883年,庞加莱提出了一般的单值化定理(1907年,他和克贝相互独立地给出完全的证明)。同年,他进而研究一般解析函数论,研究了整函数的亏格及其与泰勒展开的系数或函数绝对值的增长率之间的关系,它同皮卡定理构成后来的整函数及亚纯函数理论发展的基础。他又是多复变函数论的先驱者之一。 庞加莱为了研究行星轨道和卫星轨道的稳定性问题,在1881~1886年发表的四篇关于微分方程所确定的积分曲线的论文中,创立了微分方程的定性理论。他研究了微分方程的解在四种类型的奇点(焦点、鞍点、结点、中心)附近的性态。他提出根据解对极限环(他求出的一种特殊的封闭曲线)的关系,可以判定解的稳定性。 1885年,瑞典国王奥斯卡二世设立“n体问题”奖,引起庞加莱研究天体力学问题的兴趣。他以关于当三体中的两个的质量比另一个小得多时的三体问题的周期解的论文获奖,还证明了这种限制性三体问题的周期解的数目同连续统的势一样大。这以后,他又进行了大量天体力学研究,引进了渐进展开的方法,得出严格的天体力学计算技术。 庞加莱还开创了动力系统理论,1895年证明了“庞加莱回归定理”。他在天体力学方面的另一重要结果是,在引力作用下,转动流体的形状除了已知的旋转椭球体、不等轴椭球体和环状体外,还有三种庞加莱梨形体存在。 庞加莱对数学物理和偏微分方程也有贡献。他用括去法证明了狄利克雷问题解的存在性,这一方法后来促使位势论有新发展。他还研究拉普拉斯算子的特征值问题,给出了特征值和特征函数存在性的严格证明。他在积分方程中引进复参数方法,促进了弗雷德霍姆理论的发展。 庞加莱对现代数学最重要的影响是创立组合拓扑学。1892年他发表了第一篇论文,1895~1904年,他在六篇论文中建立了组合拓扑学。他还引进贝蒂数、挠系数和基本群等重要概念,创造流形的三角剖分、单纯复合形、重心重分、对偶复合形、复合形的关联系数矩阵等工具,借助它们推广欧拉多面体定理成为欧拉—庞加莱公式,并证明流形的同调对偶定理。 庞加莱的思想预示了德·拉姆定理和霍奇理论。他还提出庞加莱猜想,在“庞加莱的最后定理”中,他把限制性三体问题的周期解的存在问题,归结为满足某种条件的平面连续变换不动点的存在问题。
[1] [2] 下一页
来源:中国哲士网
世界人物库,古今中外人物资料 庞加莱简介,介绍,生平事迹 图片照片
有关作品[图文]十九世纪后期的领袖数学家—庞加莱详细资料
2004-2010 中国哲士网版权所有 引用本站内容请指明来源 给本站投稿 备案序号 蜀ICP备05009253号