|
[图文]维纳
|
波尔的学说。罗素对物理学中的重要发现有着敏锐的嗅觉,他的教导使维纳牢牢记住,不仅数学是重要的。而且还需要有物理概念。 尽管维纳当时的物理学基础对于学习最新的电子理论有困难,但罗素还是鼓励他去钻研。维纳以后选择了把数学和物理、工程学结合起来的研究方向,与罗素的启迪是分不开的。爱因斯坦的论文中有一篇是论述布朗运动的,正是在这个课题上,维纳在随后的10年内做出了重要的数学成果。 对于维纳未来的数学家生涯,罗素的另一个重要影响是,他向维纳提出,一个专攻数理逻辑和数学哲学的人最好能懂一些数学。因此,维纳选读了许多数学课程,接受了哈代等人的指导。哈代清晰、有趣和发人深思的讲演,涉及了包括勒贝格积分在内的实变函数基础和复变函数引论,给了维纳深刻的启示,并直接导致他早期生涯中的主要成就。维纳称哈代是他理想的导师和榜样。 维纳原计划在剑桥读完这一年,但第二学期罗素要去哈佛讲学,他劝告维纳去哥丁根大学,攻读希尔伯特和兰道等人的课程。 维纳上了兰道教授的一门群论课,并在希尔伯特的指导下研究了微分方程。希尔伯特代表着本世纪初期数学的伟大传统,是维纳所遇到的唯一真正样样精通的天才数学家。他视野广阔,善于把非凡的抽象能力和对物理现实的实事求是的认识很好地结合起来。他成了维纳所向往的数学家。 在哥丁根所受的教育使维纳终生受益。从数学名师身上,他认识到科学力量和知识深度,第一次取得了集中和热情地干工作的经验,剑桥和哥丁根标志着维纳开始由一个神童而成长为青年数学家。 ■维纳作为现代大师 1913年,19岁的维纳在《剑桥哲学学会会刊》上发表了一篇关于集合论的论文。这是一篇将关系的理论简化为类的理论的论文,在数理逻辑的发展中占据有一席之地。维纳从此步入学术生涯。同年,他以一篇有些怀疑论味道的哲学论文《至善》,获得哈佛大学授予的鲍多因奖。在转向函数分析领域之前,维纳在逻辑和哲学方面共发表了15篇论文。 1918年,通过研读一位病逝的数学博士格林遗留的数学著作,维纳对现代数学有了进一步理解。他开始在数学领域寻找值得专心致力的问题。维纳虽是神童,但是作为一个数学家,他却姗姗来迟。 维纳开始为函数分析所吸引,决心把自己的一生贡献给它。1919年,辛辛那提大学的年轻数学家巴纳特对他作了一次拜访。维纳请他推荐一个合适的研究课题。他叫维纳注意函数空间中的积分问题。这一建议对维纳以后的数学研究产生了重大影响。 同年夏天,由于哈佛大学数学系主任奥斯古德的推荐,维纳到麻省理工学院数学系任教,并一直在该学院工作到退休。 1920年,维纳首次参加国际数学家会议。大会前,应弗雷歇邀请,他俩共同工作了一段时间。维纳试图推广弗雷歇的工作,提出了巴拿赫一维纳空间理论。他意识到自己关于布朗运动所做的工作是一个很有希望的开端,因而精神更加振奋,胸襟更加开阔了。上一页 [1] [2]
|
来源:中国哲士网
世界人物库,古今中外人物资料 维纳简介,介绍,生平事迹 图片照片
有关作品[图文]维纳详细资料
|
上一篇文章: 没有了 |
下一篇文章: 控制论之父—维纳 |
|
|
|