”就是微分。与此同时,他还在1676年首次公布了他发明的二项式展开定理。牛顿利甩它还发现了其他无穷级数,并用来计算面积、积分、解方程等等。1684年莱布尼兹从对曲线的切线研究中引入了和拉长的S作为微积分符号,从此牛顿创立的微积分学在大陆各国迅速推广。
微积分的出现,成了数学发展中除几何与代数以外的另一重要分支──数学分析(牛顿称之为“借助于无限多项方程的分析”),并进一步进进发展为微分几何、微分方程、变分法等等,这些又反过来促进了理论物理学的发展。例如瑞士J.伯努利曾征求最速降落曲线的解答,这是变分法的最初始问题,半年内全欧数学家无人能解答。1697年,一天牛顿偶然听说此事,当天晚上一举解出,并匿名刊登在《哲学学报》上。伯努利惊异地说:“从这锋利的爪中我认出了雄狮”。
(2)牛顿在光学上的成就
牛顿的《光学》是他的另一本科学经典著作(1704年)。该书用标副标题是“关于光的反射、折射、拐折和颜色的论文”,集中反映了他的光学成就。
第一篇是几何光学和颜色理论(棱镜光谱实验)。从1663年起,他开始磨制透镜和自制望远镜。在他送交皇家学会的信中报告说:“我在1666年初做了一个三角形的玻璃棱镜,以便试验那著名的颜色现象。为此,我弄暗我的房间……”接着详细叙述了他开小孔、引阳光进行的棱镜色散实验。关于光的颜色理论从亚里士多德到笛卡儿都认为白光纯洁均匀,乃是光的本色。“色光乃是白光的变种。牛顿细致地注意到阳光不是像过去人们所说的五色而是在红、黄、绿、蓝、紫色之间还有橙、靛青等中间色共七色。奇怪的还有棱镜分光后形成的不是圆形而是长条椭圆形,接着他又试验“玻璃的不同厚度部分”、“不同大小的窗孔”、“将棱镜放在外边”再通过孔、“玻璃的不平或偶然不规则”等的影响;用两个棱镜正倒放置以“消除第一棱镜的效应”;取“来自太阳不同部分的光线,看其不同的入射方向会产生什么样的影响”;并“计算各色光线的折射率”,“观察光线经棱镜后会不会沿曲线运动”;最后才做了“判决性试验”:在棱镜所形成的彩色带中通过屏幕上的小孔取出单色光,再投射到第二棱镜后,得出核色光的折射率(当时叫“折射程度”),这样就得出“白光本身是由折射程度不同的各种彩色光所组成的非匀匀的混合体”。这个惊人的结论推翻了前人的学说,是牛顿细致 上一页 [1] [2] [3] [4] [5] [6] 下一页
|